High end microprocessors with Space reliability at Teledyne e2v

ESTEC workshop – October 1st, 2018

Frederic DEVRIERE

Head of Marketing & Business Management Integrated Microelectronics Solutions Thomas GUILLEMAIN

Marketing & Business Development Manager

Data Processing Solutions

Processors for Space

Different approaches serve different needs

Teledyne e2v Space Processors

High Performance, High Reliability Semiconductor solutions Addressing <u>Critical functions</u> of the complete signal chain in <u>Demanding Applications</u>

<u>Specific Qualified versions</u> of many standard products Products developed with <u>Strategic</u> <u>Partnerships</u> (NXP, ...)

- **30+ years experience** in up screening processors
- **~45 products** launched during the last **20 years**
- 10s to 100s of kunits shipped per year
- Heritage in Flight Models

Payload critical processors Value proposition

Radiation Tolerant Technology

- ✓ 90nm SOI with proven radiation tolerance & flight history
- ✓ GHz+ processors bringing high perf computing into Space

High-Reliability Assembly

- ✓ Space level Assy including specific package materials
- ✓ HiTCE Ceramic BGA package

Space Grade Qualification

QML-Y manufacturing and qualification flows

Commercial space processors

Value Proposition

State of the Art Commercial Technology

- ✓ 45nm SOI Technology
- ✓ NXP QorlQ Commercial multicore Processors (T, LS families)
- ✓ Proven radiation performance (SEE, TID)

Space Level Devices Screening

- ✓ Ruggedized to high-reliability to ensure defect-free flight units
- ✓ Lot by lot Qualification for compliance with Space Grade

3 Reliability Options

- Matching all programs requirements
- ✓ Constellations, Commercial communication, Cubesats, ...

Space Microprocessors

Currents and roadmap

Qualification Options for Commercial Space

Default Features

Space Level Screening

- Serialization
 - $\checkmark \ \textit{Clearly identify every device manufactured}$
- Ruggedized to Hi-Reliability
 - ✓ -55C to +125C
 - ✓ Non-RoHS
- 100% inspection
 - X-rays, CSAM, visual, dimensional ensuring defect-free flight units
- Advanced dynamic & static burn-in
 - ✓ To eliminate infant failures

Lot by lot Qualification

- Life test, Temp. cycling, HAST testing
 - ✓ On every lot manufactured
 - ✓ Guarantee compliance with Space Grade
- DPA performed on every lot

High end Space Qualification Higher Samples lot Increased Life Cycle Tests

Increased Test Hours

<u>Entry level</u> Lower Samples Lot Reduced Life Cycle Tests

Understanding customers' requirements is key

To find the best reliability versus € compromise

Teledyne e2v Space Flows Comparison Chart

Overview and comparison chart of globally recognised and Teledyne e2v's own space flows, including military, industrial and commercial flows, to help our customers find the most suitable quality grade.

For an overview of space devices and individual flows, visit e2v.com/Semis/Space

FLOW CHARTS		CERAMIC													
		HERMETIC													
Main Process Flow Steps	Method / Condition	ESCC 9000	QML-\	v	QML-Q E		Enhanced		QML-Y	"-NX" NASA level		el			
		(berlw)	(wired) (i	Filp Chip)	(wired)	В/Т	D/T	M, V, C	(Filp Chip)	Level 1	Level 2	Level 3			
	Specification reference	ESCC 0000	MIL-PRF-38535		MIL-PRF-38535	35 INTERNAL PROCEDURE		INTERNAL PROCEDURE	ML-PRF-38535	EEE-INST-002 / PEM-INST-001		T-001			
Wafer Lot Acceptance	MIL-STD-883 TM5007 / QM Plan	\bigcirc	\odot	\odot	- $()$	lf appl.	if appl.	If appl.	\bigcirc						
Die Sawing / Select	Internal proced. / MIL-STD-883 TM2010 / ESCC 20400	Cond A	Cond A	Cond A	Cond B	Cond B	Cond B	Cond B	Cond A						
Die attach / cure	Internal or Subcontractor procedure	\bigcirc	\bigcirc		()		\bigcirc	\odot							
Internal Visual Inspection	MIL-STD-883 TM2010 / ESCC 20400			\odot					\bigcirc						
T-e2v Precap (flip chip)	MIL-STD-883 TM2010 / ESCC 20400			\bigcirc					\bigcirc						
Flip Chip die attach / cure	Internal or Subcontractor procedure			\odot					(
Wrebonding	Internal or Subcontractor procedure	\odot	\odot		- $()$	()	\odot								
Underfill dispense / cure / C-SAM	Internal procedure / MIL-STD-883 TM 2030			$\langle \rangle$					\bigcirc						
SMD report / reflow	Internal procedure			If appl.					lf appl.		Internal or Subcontractor				
Molding / Dam & Fill / Cure	Internal or Subcontractor procedure										procedure				
Solder balls report / reflow	Internal or Subcontractor procedure			if appl.					If appl.						
Internal Visual Inspection	MIL-STD-883 TM2010 / ESCC 20400	\odot	\odot	$\langle \rangle$	\sim	$\langle \rangle$	\bigcirc	()	\bigcirc						
T-e2v Precap	MIL-STD-883 TM2010 / ESCC 20400	\bigcirc	\bigcirc	()					\bigcirc						
Heat sink attach	Internal Procedure								if appl.						
Lid report / Sealing	Internal Procedure	$\langle \rangle$	(\checkmark)	$\langle \rangle$	()	$\langle \rangle$	$\langle \rangle$	(\checkmark)							

Download our poster describing the different screening and qualification flows at :

https://www.e2v.com/products/semicon ductors/space-semiconductors/

THANK YOU FOR YOUR ATTENTION

frederic.devriere@teledyne-e2v.com thomas.guillemain@teledyne-e2v.com

