

JAXA status report 2018

Masanobu Ozaki (ISAS/JAXA)

<<u>ozaki.masanobu@jaxa.jp</u>>

Brief Summary

- Not used frequently for spacecraft or manned-structure designing by engineers
- Used for detector design/calibration and astrophysical simulations by scientists
 - Payload design/calibration: Hitomi/XRISM, Suzaku, Arase, Cubesat, ...
 - Detector development
 - Astrophysical simulations

Spacecraft or Manned-Structure Designing?

- Geant4-use looks not so active:
 - Spacecraft design matured enough for near-earth mission?
 - Lunar, Martian or Venus mission can be treated as an extension of geostationary orbit—they have no magnetosphere.
- Next frontier:
 - Jovian or Saturn mission (but no active study yet)
 - Lunar manned-base? (related to post-ISS)

Payload design/calibration

- Several Geant4-utilized missions: on-orbit or terminated
 - Hitomi (a.k.a., ASTRO-H: X-ray observatory) terminated due to on-orbit accident <u>http://www.isas.jaxa.jp/en/missions/spacecraft/past/hitomi.html</u>
 - XRISM—successor of Hitomi—(X-Ray Imaging and Spectroscopy Mission) under development
 - Arase (a.k.a., ERG: geospace probe satellite) on orbit <u>http://www.isas.jaxa.jp/en/missions/spacecraft/current/erg.html</u>
 - Suzaku terminated due to big solar flare in 2015 http://www.isas.jaxa.jp/en/missions/spacecraft/others/suzaku.html
- Geant4 usage?
 - Detector's shielding design \leftarrow already reported in previous workshops
 - Precise detector calibration
 - Hitomi/XRISM \leftarrow will be presented 3rd day
 - Arase
 - Suzaku

High energy electron sensor onboard Arase

High-energy Electron exPeriments (HEP) instrument on board Arase observes 70 keV– 2 MeV. The HEP consists of three HEP-L modules (70 keV – 1MeV) and three HEP-H modules (700 keV – 2MeV).

A module consists of a mechanical collimator and stacked silicon strp detectors (SSDs). The Opening angle of the collimator: \sim 60 degree x 10 degree. To determine elevation angle, SSD has one dimensional position resolution.

Energy response of HEP detector

To calculate detector response to electrons, we use Geant 4 toolkit. Figures below show detected spectra when monoenergetic electrons with various energies are irradiated to the HEP SSD module.

 Based on Geant-4 simulations, we have constructed response matrices for HEP-L and HEP-H. By inverting the the matrices, we derive incident electron differential fluxes from an observed count histogram. The resultant flux data are open to the public as Level-2 science data product.

[Observed histogram] (1D) = [Response Matrix] (2D) x [Differential flux] (1D) → [Differential flux] = [Response Matrix]⁻¹ x [Observed histogram]

Electron count histograms over the incident-observed energy space simulated by the ERG-HEP simulator using Geant 4 toolkit

Suzaku HXD detector precise calibration

Geant4 mass models

Gamma-ray detection efficiency for each panel

Detector Development

- Geant4 is used to simulate the detector behavior
 - X-ray polarization detection with precise CMOS image sensor
 - Optimal scintillator design using G4 optical photon simu By courtesy of K.Asakura (Osaka-U)

24.8keV 2.5μm

MF=16.6±1.2%@12.4keV

 $MF = \frac{C_{max} - C_{min}}{C_{max} + C_{min}}$

MF=18.7±0.7%@24.8keV

- Simulation of photoelectron tracks.
- 100% polarized incident X-rays are irradiated.
- Diffusion of the charge inside the detector is NOT taken into account.

Detector Development

- Geant4 is used to simulate the detector behavior
 - X-ray polarization detection with precise CMOS image sensor
 - Optimal scintillator design using G4 optical photon simulation for GRB detection fleet

• two sides of lateral extension : ~268 cm² x 9mmt is a basic idea to maximize geometrical area challenging for such "large and thin" detector with small readout area

Csl scintillator readout by multi pixel photon counter (MPPC) is now being evaluated as the first feasibility study for their large light yield, compact readout area and low power consumption.

JAXA status report 2018 (Masanobu Ozaki)

based on Geant4 simulation

by the proton beam test

Astrophysical Simulations

- Geant4 simulation in astrophysical scale (e.g., pc to Mpc) to represent observations

 - Chandra spectrum of active galactic nuclei

Summary

- Geant4 not used frequently for spacecraft or manned-structure designing by engineers
 - Maybe some use PHITS
- Used for detector design/calibration and astrophysical simulations by scientists
 - Payload design/calibration: Hitomi/XRISM, Suzaku, Arase, Cubesat
 - Detector development: Scintillator design, CMOS X-ray polarimeter
 - Astrophysical simulations: photon simulations observed by Chandra, Hitomi