

# AUTOCODING WORKING GROUP Automatic Code Generation for AOCS Flight SW

DAVIDE ODDENINO 16/10/2018

Special thanks for their valuable contribution to: Carlo Valentini (trainee at ESA) and to the Woking Group ESA members

🚍 🚼 🛃 💥

- I+I

ESA UNCLASSIFIED - For Official Use

#### Outline of the presentation



- Background WG objectives
- Presentation of ESA Handbook
- Autocoding Process Definition Proof of equivalence
- Extended WG terms of reference
- Planning
- Conclusions







# **WG Objectives**

#### Mode Guidelines for the Automatic List of modelling guidelines have been implemented in the draft HB. They Generation of AOCS/GNC Flight

## Process mapping vs stSW Handbook

The full process will be mapped onto the SW development process and AOCS development process as defined in the standards.

| The review will be                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | PEMS-RUTOCOCEQ1FR_VI.P                                                                                          | SAUTOCOCEQ (Preparation for the Qualification of Auto- |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------|--------------------------------------------------------|
| - \$15471547154715155674717                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                 | Code Generated from Simulink Models) Final Report      |
| ➢ ReportiRÐ-02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ESA-TECSAA-TN-007001                                                                                            | AOCS Flight SW Automatic Code Generation               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Mallin & a. (.). 1990, 1997, 1997, 1997, 1997, 1997, 1997, 1997, 1997, 1997, 1997, 1997, 1997, 1997, 1997, 1997 | process                                                |
| The templated of templated | utantecska-trioussong                                                                                           | ACCS FSW AUTOCODING Verification in the                |
| Matlab toolbox has                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | to be defined and di                                                                                            | s Final Report                                         |

ESA UNCLASSIFIED - For Official Use

ADCSS 2018 Slide 3

= II 🛏 :: 🖛 + II 💻 🚝 = II II = = = 12 :: II = II = II :: II 💥 🛏 |\*|

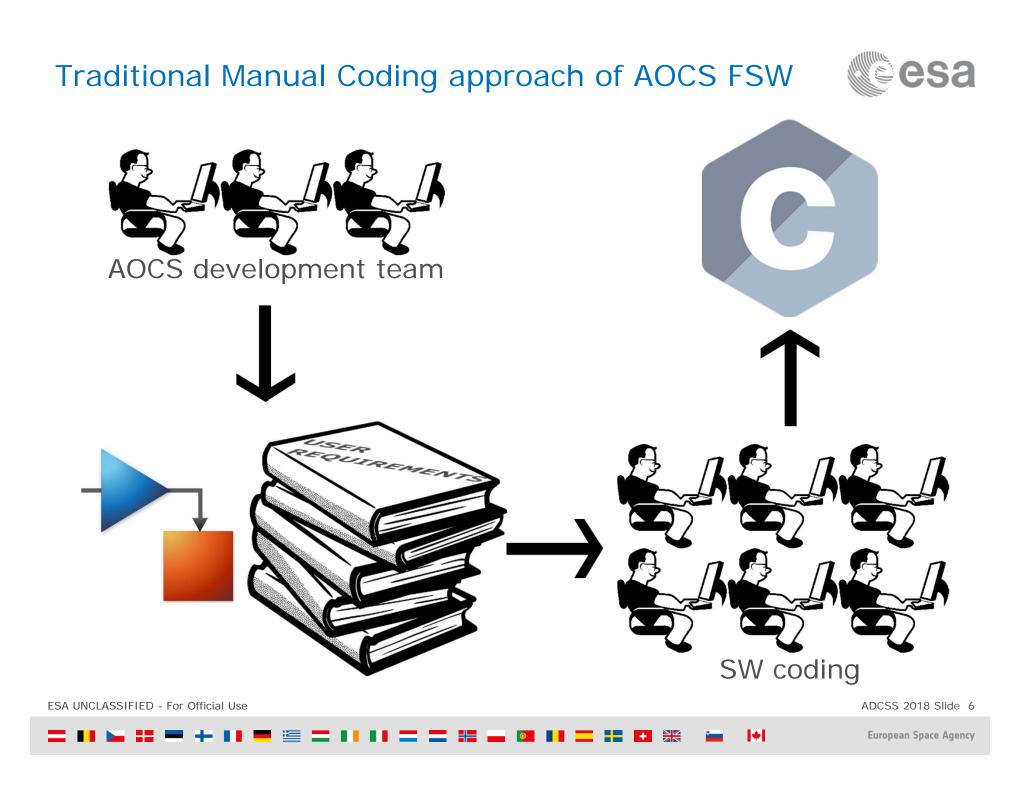


- 1. INTRODUCTION
- 2. APPLICABLE AND REFERENCE DOCUMENTS
- 3. TERMS, DEFINITION AND ABBREVIATED TERMS
- 4. INTRODUCTION to AOCS FSW development PROCESS
  - a. The classical process: Manual Coding
  - b. Introduction to Autocoding
  - c. Comparison and key differences
- 5. MODELLING GUIDELINES FOR CODE GENERATION
  - a. Modelling guidelines
    - General modelling guidelines
    - Modelling with Matlab
    - Modelling with Simulink
    - Modelling with Stateflow
  - b. Code generation guidelines
    - Coder configuration settings
    - Generated Code structureReuse of legacy code

- 6. VERIFICATION & VALIDATION
  - a. Automatic model and code verification tools
- 7. Traceability to ECSS-E-40C, ecss-q-80 FOR AUTOCODING
  - a. Traceability to ECSS-E-40C
  - b. Traceability to ECSS-Q-80C
- 8. GENERATION OF REPORTING
  - a. Design reports
  - b. Test plans
  - c. Test reports
  - d. Verification control documents
- 9. CONCLUSIONS
- 10. ANNEX A: EXAMPLES
  - a. Project Examples
  - b. Matlab examples
- 11. ANNEX B: SIMULINK BLOCKS ALLOWED FOR CODE GENERATION

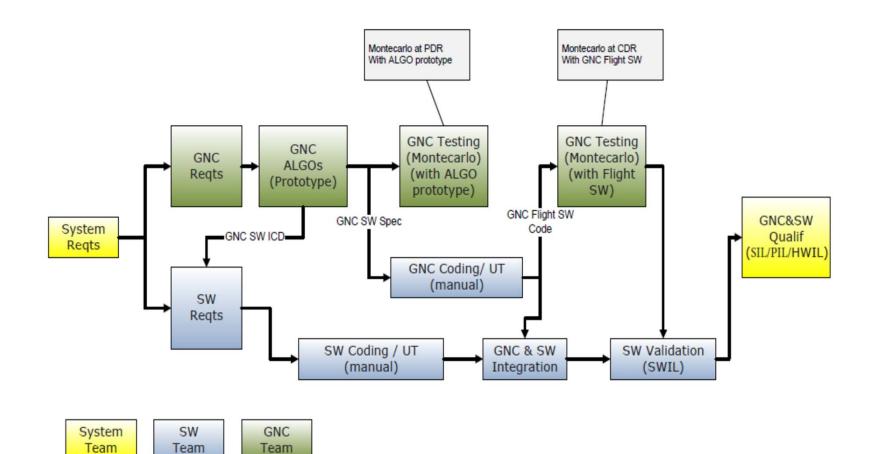





#### 1. INTRODUCTION

2. APPLICABLE AND REFERENCE DOCUMENTS

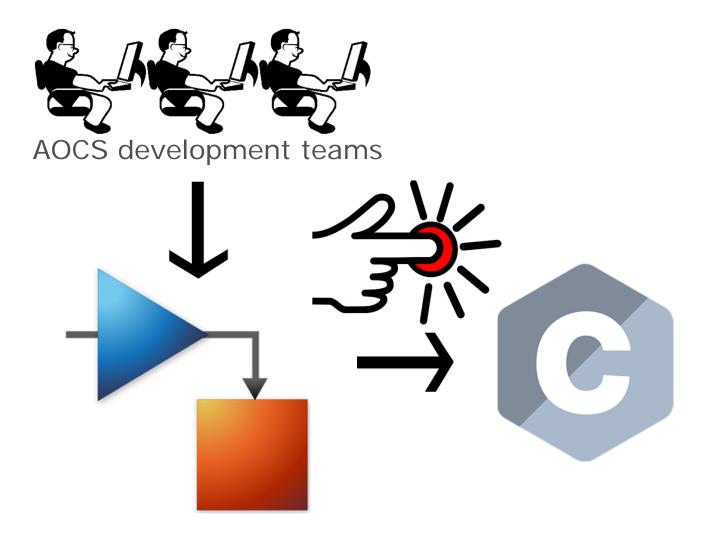
- 3. TERMS, DEFINITION AND ABBREVIATED TERMS
- 4. INTRODUCTION to AOCS FSW development PROCESS
  - a. The classical process: Manual Coding
  - b. Introduction to Autocoding
  - c. Comparison and key differences
- 5. MODELLING GUIDELINES FOR CODE GENERATION
  - a. Modelling guidelines
    - General modelling guidelines
    - Modelling with Matlab
    - Modelling with Simulink
    - Modelling with Stateflow
  - b. Code generation guidelines
    - Coder configuration settings
    - Generated Code structure
    - Reuse of legacy code


- 6. VERIFICATION & VALIDATION
  - a. Automatic model and code verification tools
- 7. Traceability to ECSS-E-40C, ecss-q-80 FOR AUTOCODING
  - a. Traceability to ECSS-E-40C
  - b. Traceability to ECSS-Q-80C
- 8. GENERATION OF REPORTING
  - a. Design reports
  - b. Test plans
  - c. Test reports
  - d. Verification control documents
- 9. CONCLUSIONS
- 10. ANNEX A: EXAMPLES
  - a. Project Examples
  - b. Matlab examples
- 11. ANNEX B: SIMULINK BLOCKS ALLOWED FOR CODE GENERATION









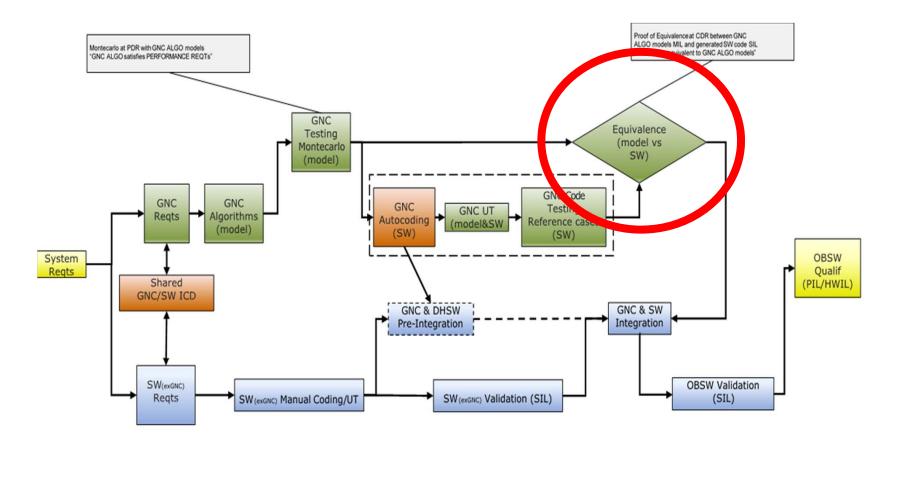












ESA UNCLASSIFIED - For Official Use

ADCSS 2018 Slide 8

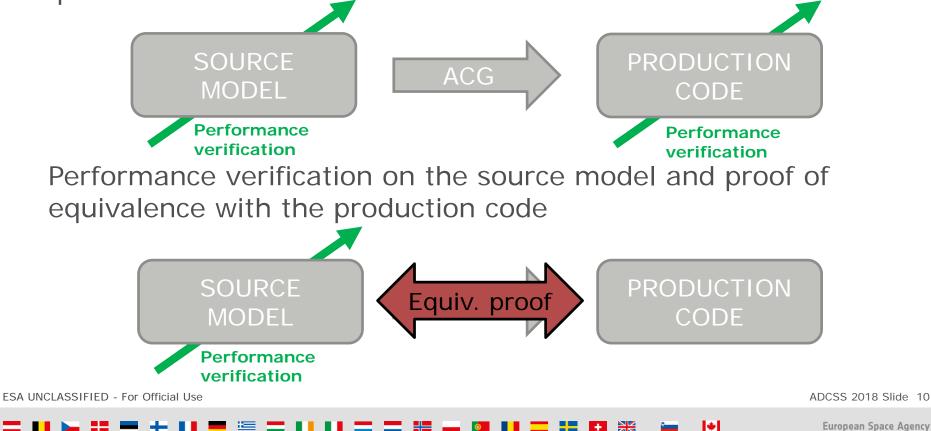


#### Automatic Code Generation approach of AOCS FSW



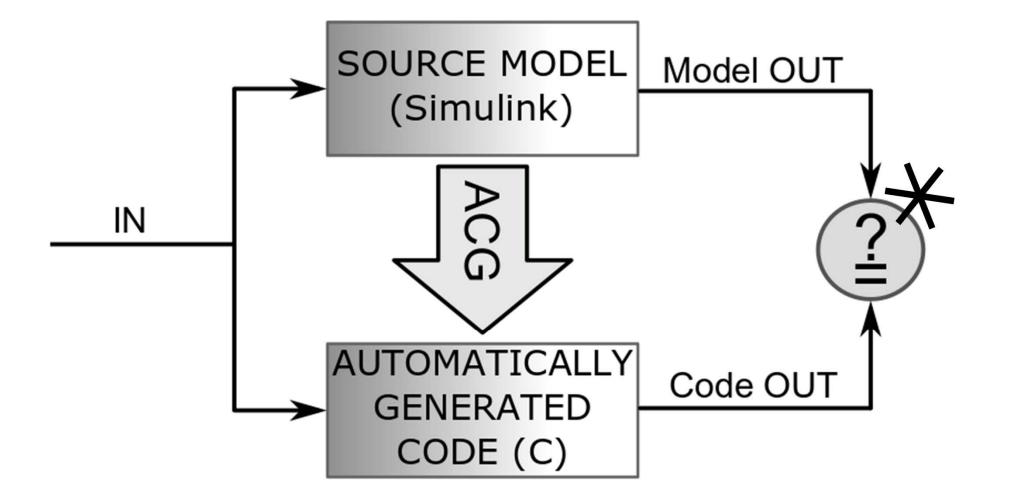







#### Proof of equivalence

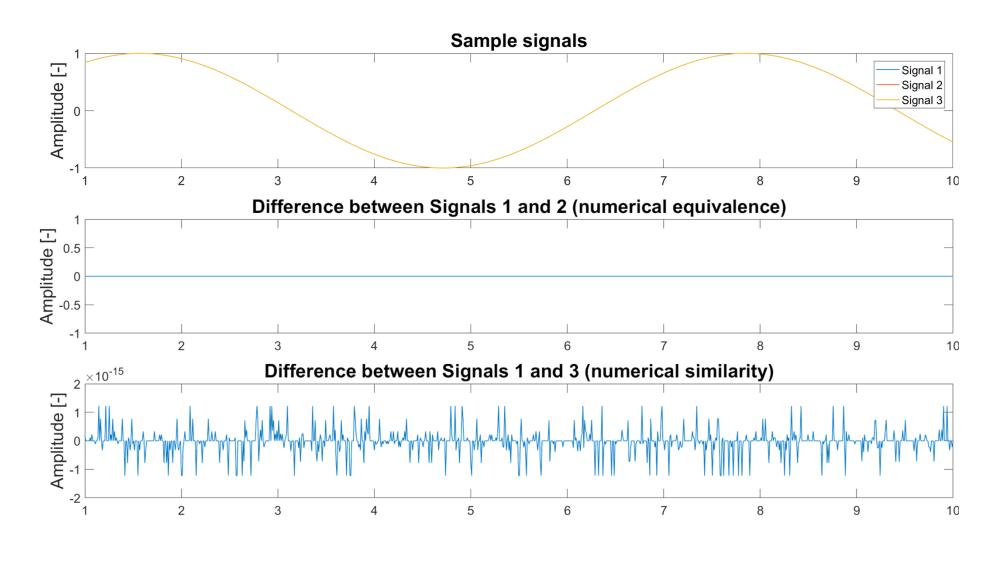



- Certification of the ACG tools
- Post-synthesis <u>certification</u> of the FSW

Performance verification on both source model and production code



Equivalence between autocoded SW and source





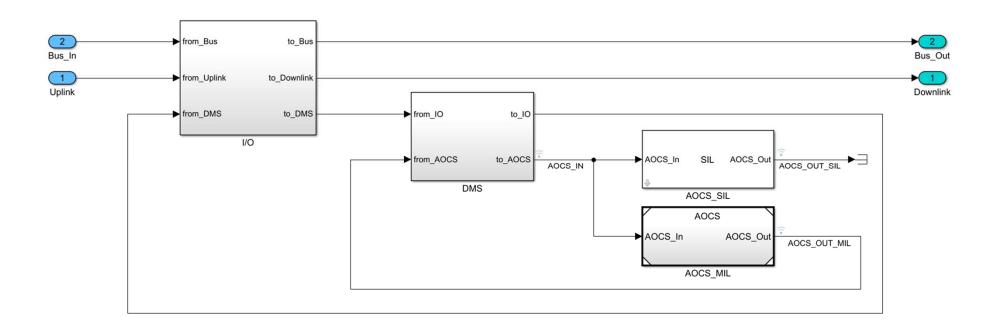



#### Numerical equivalence vs similarity





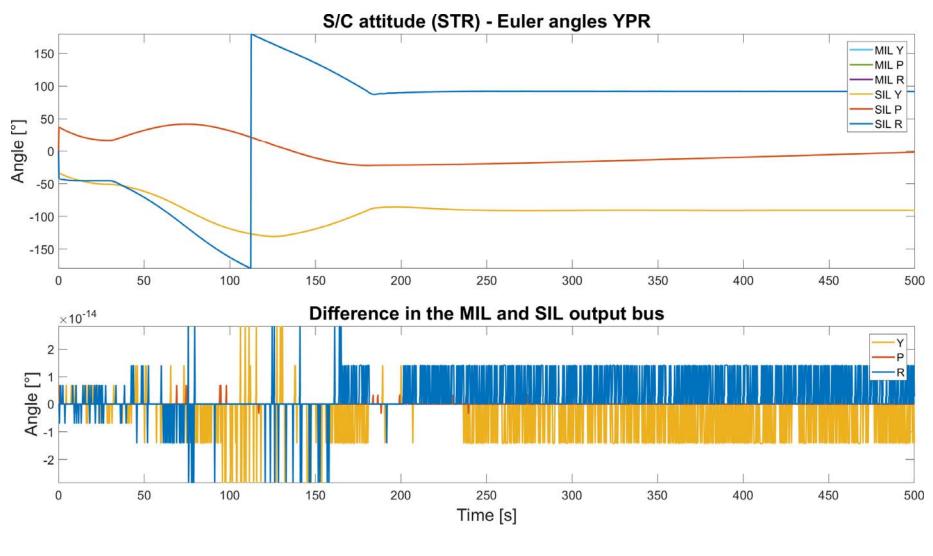
ESA UNCLASSIFIED - For Official Use


ADCSS 2018 Slide 12

**European Space Agency** 

= 88 ⊨ 88 = + 88 = ≝ = 88 88 = 2 88 88 = 00 88 = 88 ₩ ₩ ₩ ₩ ₩





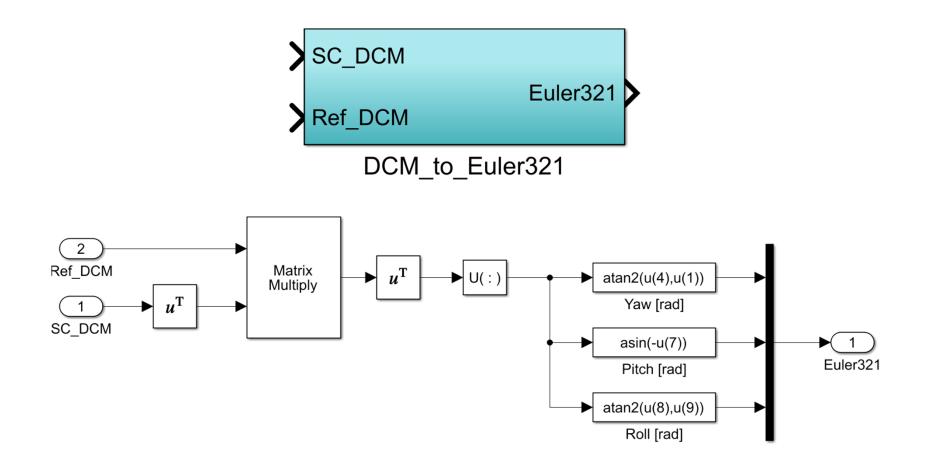





#### Example of equivalence



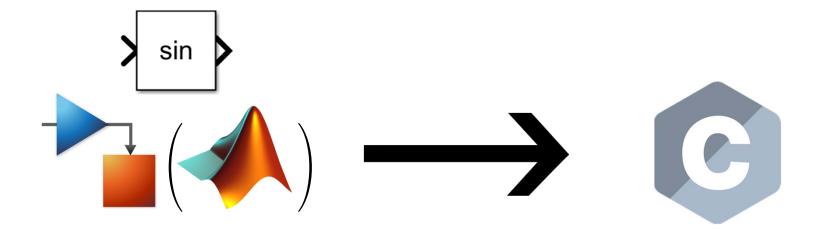



ESA UNCLASSIFIED - For Official Use

ADCSS 2018 Slide 14

**European Space Agency** 

Identification of the issue

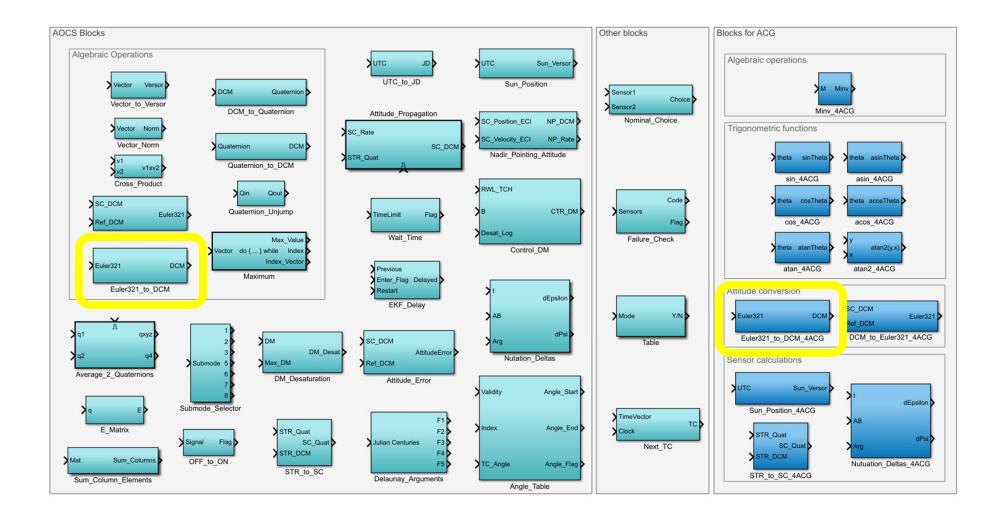







#### The issue

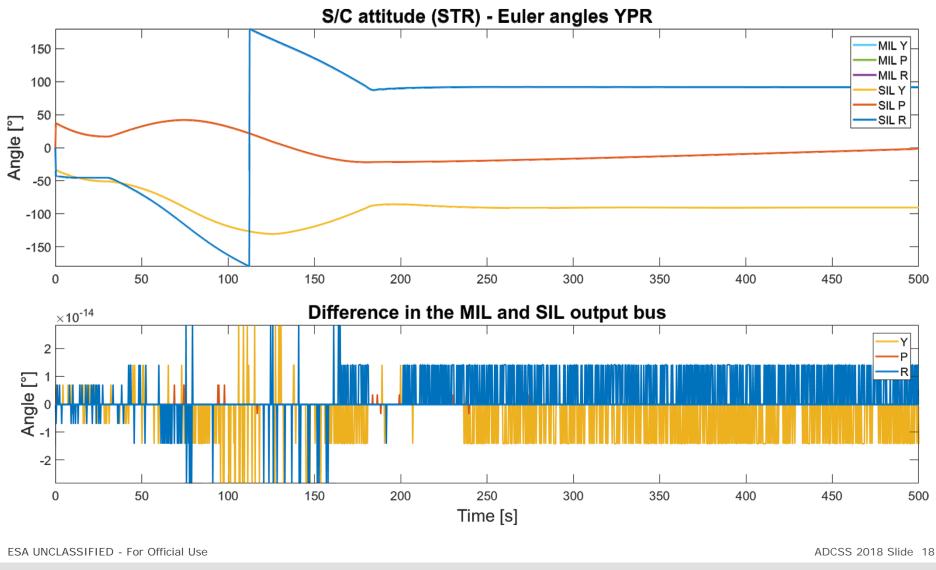





Numerical discrepancy is caused by a different **lowlevel implementation** of the trigonometric functions in the two languages



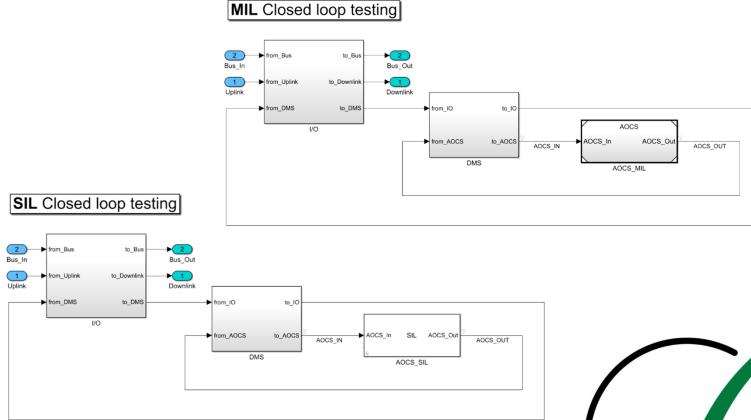
#### The extended library






### Numerical equivalence




With the oneiginital aby any other



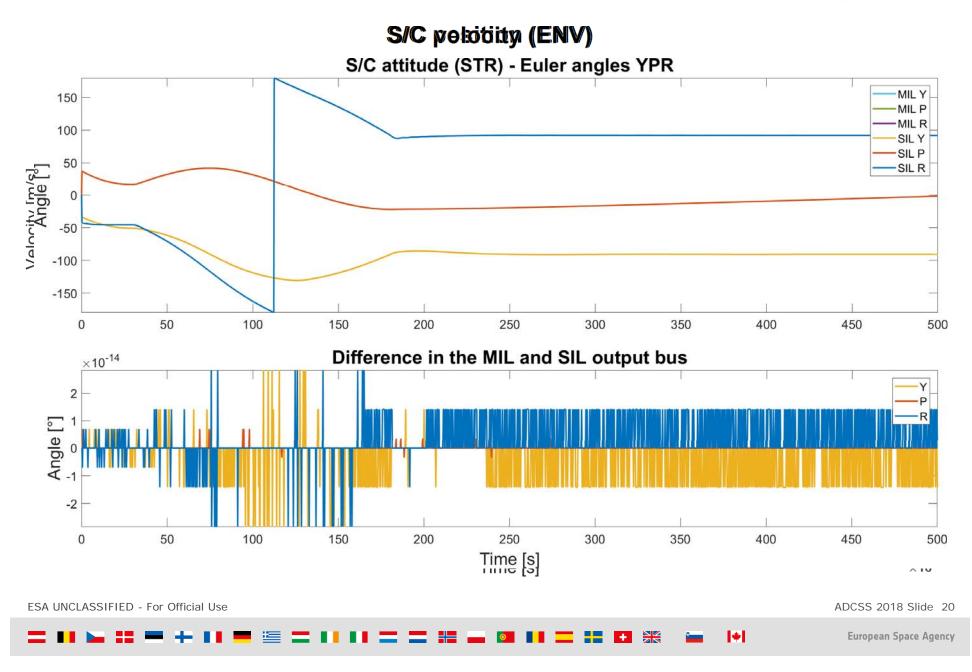


### Numerical equivalence – closed loop behavior





- 100 iterations of the MC campaign in SHM
- 100 iterations of the MC campaign in IMM
- *Long* simulations (10 orbital periods)




ESA UNCLASSIFIED - For Official Use

ADCSS 2018 Slide 19

#### Difference in CL behavior without *equivalence*







- 1. INTRODUCTION
- 2. APPLICABLE AND REFERENCE DOCUMENTS
- 3. TERMS, DEFINITION AND ABBREVIATED TERMS
- 4. INTRODUCTION to AOCS FSW development PROCESS
  - a. The classical process: Manual Coding
  - b. Introduction to Autocoding
  - c. Comparison and key differences
- 5. MODELLING GUIDELINES FOR CODE GENERATION
  - a. Modelling guidelines
    - General modelling guidelines
    - Modelling with Matlab
    - Modelling with Simulink
    - Modelling with Stateflow
  - b. Code generation guidelines
    - Coder configuration settings
    - Generated Code structureReuse of legacy code

- 6. VERIFICATION & VALIDATION
  - a. Automatic model and code verification tools
- 7. Traceability to ECSS-E-40C, ecss-q-80 FOR AUTOCODING
  - a. Traceability to ECSS-E-40C
  - b. Traceability to ECSS-Q-80C
- 8. GENERATION OF REPORTING
  - a. Design reports
  - b. Test plans
  - c. Test reports
  - d. Verification control documents
- 9. CONCLUSIONS
- 10. ANNEX A: EXAMPLES
  - a. Project Examples
  - b. Matlab examples
- 11. ANNEX B: SIMULINK BLOCKS ALLOWED FOR CODE GENERATION





- 1. INTRODUCTION
- 2. APPLICABLE AND REFERENCE DOCUMENTS
- 3. TERMS, DEFINITION AND ABBREVIATED TERMS
- 4. INTRODUCTION to AOCS FSW development PROCESS
  - a. The classical process: Manual Coding
  - b. Introduction to Autocoding
  - c. Comparison and key differences

#### 5. MODELLING GUIDELINES FOR CODE GENERATION

- a. Modelling guidelines
  - General modelling guidelines
  - Modelling with Matlab
  - Modelling with Simulink
  - Modelling with Stateflow
- b. Code generation guidelines
  - Coder configuration settings
  - Generated Code structure
  - Reuse of legacy code

- 6. VERIFICATION & VALIDATION
  - a. Automatic model and code verification tools
- 7. Traceability to ECSS-E-40C, ecss-q-80 FOR AUTOCODING
  - a. Traceability to ECSS-E-40C
  - b. Traceability to ECSS-Q-80C
- 8. GENERATION OF REPORTING
  - a. Design reports
  - b. Test plans
  - c. Test reports
  - d. Verification control documents
- 9. CONCLUSIONS
- 10. ANNEX A: EXAMPLES
  - a. Project Examples
  - b. Matlab examples
- 11. ANNEX B: SIMULINK BLOCKS ALLOWED FOR CODE GENERATION



### Severity of guidelines



| Mandatory                                                                                                                          | Strongly Recommended                                                                                                                                                                                                                                                                                  | Recommended                                                                                                                                                                                                        |
|------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Definition                                                                                                                         |                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                    |
| <ul> <li>Guidelines that are<br/>absolutely essential.</li> <li>Guidelines where 100%<br/>compliance shall be required.</li> </ul> | <ul> <li>Guidelines that are agreed<br/>upon to be a good practice,<br/>but use of legacy models<br/>preclude from being<br/>compliant at 100%</li> <li>Models should conform to<br/>these guidelines to the<br/>greatest extent possible;<br/>however 100% compliance is<br/>not required</li> </ul> | <ul> <li>Guidelines that are recommended to improve the appearance of the model diagram, but are not critical to running the model</li> <li>Guidelines where conformance is preferred, but not required</li> </ul> |
| $Consequences-If \ the \ guideline \ is \ viola$                                                                                   | ited                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                    |
| <ul> <li>Essential items are missing</li> <li>The model might not work properly</li> </ul>                                         | <ul> <li>The quality and the appearance deteriorates</li> <li>There may be an adverse effect on maintainability, portability, and reusability</li> </ul>                                                                                                                                              | • The appearance will not conform with other projects                                                                                                                                                              |
| Waiver Policy – If the guideline is inter                                                                                          | tionally ignored                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                    |
| • The reasons must be justified and documented                                                                                     | • The reasons must be documented                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                    |

#### Modelling and Coding guidelines

General Modelling Guidelines Approaches everything that has to do with the environment, in which the user models the system

| ID          | ESA-SY-001                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |
|-------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| Title       | Consistent software environment                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |
| Priority    | Mandatory                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |
| Description | During software development, it is recommended that a consistent<br>software environment is used across the project. Software includes, but<br>is not limited, to:<br>- MATLAB<br>- Simulink<br>- C Compiler (for simulation)<br>- C Compiler (for target hardware)<br>Consistent software environment implies that the same version of the<br>software is used across the full project. The version number applies to<br>any patches or extensions to the software used by a group. |  |
| Rationale   | If different versions are used there is no guarantee that the features will<br>be compatible and the generated code is the same. This rule ensures the<br>outcome is as expected.                                                                                                                                                                                                                                                                                                    |  |

#### Generated Code Structure

These rules apply to the entire model

| ID          | ESA                                                                                                                                                                                                                                                                                                                                                                           |  |
|-------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| Title       | Parameter definition                                                                                                                                                                                                                                                                                                                                                          |  |
| Priority    | Highly Recommended                                                                                                                                                                                                                                                                                                                                                            |  |
| Description | The parameters should be documented along with the class chosen for<br>the parameter definition.<br>It is recommended that parameters are defined either in the File Scope<br>or in a general file containing all the OBSW parameters.<br>Procedures and options on how to define parameter classes are<br>demarcated in subsection <b>Error! Reference source not found.</b> |  |
| Rationale   | By defining beforehand how the parameters should be defined, it<br>become predictable in which portion of the code the parameters will be<br>declared and defined.                                                                                                                                                                                                            |  |

| ★ Commonly Used Parameters     Select:     Solver     Data Import/Export     orginals and Parameters     Stateflow     Diagnostics     Hardware Implementation     Model Referencing     Simulation Target     Code Generation     Coverage | Tasking and sample<br>Periodic sample time<br>Treat each discret |                                             |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------|---------------------------------------------|
| 0                                                                                                                                                                                                                                           | 1                                                                | OK Cancel Help Apply                        |
| 9                                                                                                                                                                                                                                           |                                                                  |                                             |
| ameter                                                                                                                                                                                                                                      | Value                                                            | Description Description                     |
| •<br>•                                                                                                                                                                                                                                      | Value<br>Fixed-step                                              | Description<br>Required for code generation |

Simulink

Rules regarding the Simulink blocks

| ID          | ESA-SL-001                                                                                                                                                                                                                                                                                   |  |
|-------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| Title       | Blocks not recommended for C/C++ code production                                                                                                                                                                                                                                             |  |
| Priority    | Mandatory                                                                                                                                                                                                                                                                                    |  |
| Description | The model should not have any kind of blocks that are not suitable for code production.<br>The list of such blocks can be used is in annex <b>Error! Reference source not found.</b><br>Automatic Testing:<br>mathworks.do178.PCGSupport<br>mathworks.maab.jm_0001<br>mathworks.maab.hd_0001 |  |
| Rationale   | Using blocks compatible with code generation is essential for the process.                                                                                                                                                                                                                   |  |

ESA UNCLASSIFIED - For Official Use

ADCSS 2018 Slide 24

252

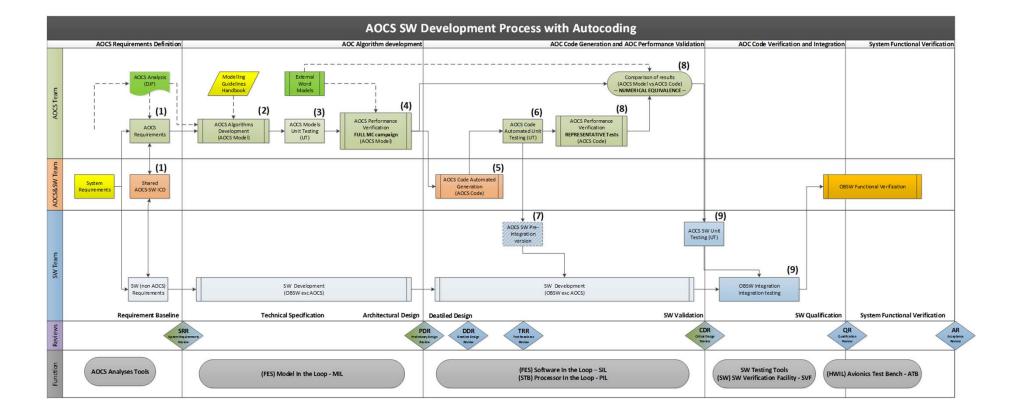


- 1. INTRODUCTION
- 2. APPLICABLE AND REFERENCE DOCUMENTS
- 3. TERMS, DEFINITION AND ABBREVIATED TERMS
- 4. INTRODUCTION to AOCS FSW development PROCESS
  - a. The classical process: Manual Coding
  - b. Introduction to Autocoding
  - c. Comparison and key differences
- 5. MODELLING GUIDELINES FOR CODE GENERATION
  - a. Modelling guidelines
    - General modelling guidelines
    - Modelling with Matlab
    - Modelling with Simulink
    - Modelling with Stateflow
  - b. Code generation guidelines
    - Coder configuration settings
    - Generated Code structureReuse of legacy code

- 6. VERIFICATION & VALIDATION
  - a. Automatic model and code verification tools
- 7. Traceability to ECSS-E-40C, ecss-q-80 FOR AUTOCODING
  - a. Traceability to ECSS-E-40C
  - b. Traceability to ECSS-Q-80C
- 8. GENERATION OF REPORTING
  - a. Design reports
  - b. Test plans
  - c. Test reports
  - d. Verification control documents
- 9. CONCLUSIONS
- 10. ANNEX A: EXAMPLES
  - a. Project Examples
  - b. Matlab examples
- 11. ANNEX B: SIMULINK BLOCKS ALLOWED FOR CODE GENERATION






- 1. INTRODUCTION
- 2. APPLICABLE AND REFERENCE DOCUMENTS
- 3. TERMS, DEFINITION AND ABBREVIATED TERMS
- 4. INTRODUCTION to AOCS FSW development PROCESS
  - a. The classical process: Manual Coding
  - b. Introduction to Autocoding
  - c. Comparison and key differences
- 5. MODELLING GUIDELINES FOR CODE GENERATION
  - a. Modelling guidelines
    - General modelling guidelines
    - Modelling with Matlab •
    - Modelling with Simulink •
    - Modelling with Stateflow
  - b. Code generation guidelines
    - Coder configuration settings •
    - Generated Code structure •
    - Reuse of legacy code

- 6. VERIFICATION & VALIDATION
  - a. Automatic model and code verification tools
- 7. Traceability to ECSS-E-40C, ECSS-Q-80 for Autocoding
  - a. Traceability to ECSS-E-40C
  - b. Traceability to ECSS-Q-80C
- 8. GENERATION OF REPORTING
  - a. Design reports
  - b. Test plans
  - c. Test reports
  - d. Verification control documents
- 9. CONCLUSIONS
- **10. ANNEX A: EXAMPLES** 
  - a. Project Examples
  - b. Matlab examples
- 11. ANNEX B: SIMULINK BLOCKS ALLOWED FOR CODE GENERATION



#### **Development and Verification Process**







### Traceability vs ECSS E-40 and ECSS Q-80



| Clause  | Description                                                                                                                                                                                                                                                                                                                                                           |    | mpliance                                                                                                                                           |
|---------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|----------------------------------------------------------------------------------------------------------------------------------------------------|
| 5.3.2.4 | Automatic code generation           a. The autocode input models shall be reviewed together with the rest of the software specification, architecture and design.           NOTE The autocode input models are integral part of the                                                                                                                                   | а. | Proposed in this HB: the model<br>is part of the PDR, DDR<br>reviewed by joint GNC/SW<br>teams                                                     |
|         | <ul> <li>software specification, architecture and design.</li> <li>EXPECTED OUTPUT: Autocode input model review [MGT, SDP; SRR, PDR].</li> <li>b. In the case of coexisting autocoded and manually written parts, the software development plan shall include the definition of a clear interface definition and resource allocation (memory, CPU) at PDR.</li> </ul> | b. | As proposed in this HB. In<br>particular a SW/SW ICD<br>between manual SW/GNC<br>models and autocoded SW<br>shall exist and be submitted to<br>PDR |
|         | <ul><li>EXPECTED OUTPUT: Autocode interface definition and resource allocation [MGT, SDP; SRR, PDR].</li><li>c. The input model management, the code generation process and supporting tools shall be documented in</li></ul>                                                                                                                                         | C. | This HB provided useful inputs<br>for such Software<br>Development Plan                                                                            |
|         | <ul> <li>the SDP.</li> <li>EXPECTED OUTPUT: Automatic code generation development process and tools [MGT, SDP; SRR, PDR].</li> <li>d. The supplier shall define in the SDP the verification and validation strategy for automatic code generation as a result of the trade off between the qualification of</li> </ul>                                                | d. | Qualification of the code<br>generator is complex. Instead,<br>this HB provide inputs for<br>producing automated<br>"qualifiable" code             |
|         | <ul> <li>the code generation toolchain and the end to end validation strategy of the software item, or any combination thereof, in relation with ECSS-Q-ST-80 clause 6.2.8.</li> <li>EXPECTED OUTPUT: Automatic code generation</li> </ul>                                                                                                                            | e. | The approach to configuration<br>management of model<br>options, model toolchain shall<br>be described in the SW<br>Configuration Management       |
|         | <ul> <li>verification and validation strategy [MGT, SDP; SRR, PDR].</li> <li>e. The configuration management of the automatic code generation related elements shall be defined in the</li> </ul>                                                                                                                                                                     |    | Plan.                                                                                                                                              |
|         | SCMP.<br>EXPECTED OUTPUT: Automatic code generation<br>configuration management [MGT, SCMP; SRR, PDR].                                                                                                                                                                                                                                                                |    |                                                                                                                                                    |

ESA UNCLASSIFIED - For Official Use

ADCSS 2018 Slide 28

#### = 88 🛌 == + 88 💻 🚝 == 88 88 == 32 == 32 == 18 == 18 == 18



- 1. INTRODUCTION
- 2. APPLICABLE AND REFERENCE DOCUMENTS
- 3. TERMS, DEFINITION AND ABBREVIATED TERMS
- 4. INTRODUCTION to AOCS FSW development PROCESS
  - a. The classical process: Manual Coding
  - b. Introduction to Autocoding
  - c. Comparison and key differences
- 5. MODELLING GUIDELINES FOR CODE GENERATION
  - a. Modelling guidelines
    - General modelling guidelines
    - Modelling with Matlab
    - Modelling with Simulink
    - Modelling with Stateflow
  - b. Code generation guidelines
    - Coder configuration settings
    - Generated Code structureReuse of legacy code

- 6. VERIFICATION & VALIDATION
  - a. Automatic model and code verification tools
- 7. Traceability to ECSS-E-40C, ECSS-Q-80 for Autocoding
  - a. Traceability to ECSS-E-40C
  - b. Traceability to ECSS-Q-80C
- 8. GENERATION OF REPORTING
  - a. Design reports
  - b. Test plans
  - c. Test reports
  - d. Verification control documents
- 9. CONCLUSIONS
- 10. ANNEX A: EXAMPLES
  - a. Project Examples
  - b. Matlab examples
- 11. ANNEX B: SIMULINK BLOCKS ALLOWED FOR CODE GENERATION





- 1. INTRODUCTION
- 2. APPLICABLE AND REFERENCE DOCUMENTS
- 3. TERMS, DEFINITION AND ABBREVIATED TERMS
- 4. INTRODUCTION to AOCS FSW development PROCESS
  - a. The classical process: Manual Coding
  - b. Introduction to Autocoding
  - c. Comparison and key differences
- 5. MODELLING GUIDELINES FOR CODE GENERATION
  - a. Modelling guidelines
    - General modelling guidelines
    - Modelling with Matlab
    - Modelling with Simulink
    - Modelling with Stateflow
  - b. Code generation guidelines
    - Coder configuration settings
    - Generated Code structure
    - Reuse of legacy code

- 6. VERIFICATION & VALIDATION
  - a. Automatic model and code verification tools
- 7. Traceability to ECSS-E-40C, ECSS-Q-80 for Autocoding
  - a. Traceability to ECSS-E-40C
  - b. Traceability to ECSS-Q-80C

8. GENERATION OF REPORTING a. Design reports

- b. Test plans
- c. Test reports
- d. Verification control documents
- 9. CONCLUSIONS
- 10. ANNEX A: EXAMPLES
  - a. Project Examples
  - b. Matlab examples

11. ANNEX B: SIMULINK BLOCKS ALLOWED FOR CODE GENERATION







# **Extended Working Group**



ESA UNCLASSIFIED - For Official Use

ADCSS 2018 Slide 31

#### Extended Working Group ToR



The purpose of this Extended Working Group (EWG) is to review and update the draft *ESA Modeling guidelines for Autocoding Handbook* to be used as reference when creating models and generating flight code using modelling and autocoding tools

The intended use of the guidelines are:

- support to projects providing a harmonized ESA position across the Agency.
- Support to R&D technology activities.
- Promotion of the use of this type of methodology across the phases of a development.
- Contribution to the assessment of the quality of the final software product



#### Extended Working Group Schedule



| <b>T</b> <sub>0</sub> (October, 2018) | Kick-off:                                          |
|---------------------------------------|----------------------------------------------------|
|                                       | Distribution to nominated representatives of draft |
|                                       | ESA Handbook                                       |
| December, 2018                        | Deadline for comments                              |
|                                       |                                                    |
| February/March 2019                   | Individual meetings                                |
| 30 <sup>th</sup> March 2019           | Second distribution of draft ESA Handbook          |
| (TBD) April 2019                      | Plenary EWG ACG meeting (ESTEC)                    |
| May 2019                              | Official release of the                            |
|                                       | Guidelines for the Automatic Code Generation for   |
|                                       | AOCS/GNC Flight SW Handbook                        |



Guidelines for the Automatic Code Generation for AOCS/GNC Flight SW Handbook



#### Conclusions







ESA UNCLASSIFIED - For Official Use

ADCSS 2018 Slide 34

= 88 ba 22 = + 88 = '= = 88 88 = 2 # a 18 **5** = **18 5 18 \* \* \***