Together ahead. **RUAG**

UART I/F and protocol publication

Torbjörn Hult

ESA UNCLASSIFIED – For Official Use

UART interface and protocol

- A proposal for a standard including an independent verification on a hardware test bench was prepared within an ESA study and completed in spring 2014.
- A user needs survey was performed and user requirements and draft physical and data link layer requirements were reviewed by the survey responders interested in following the work.
- First results presented at ADCSS 2013 as part of a generic presentation on recommendations for use of communication links within SAVOIR
- The intention was to later include the proposal as part of the ECSS-E-ST-50-14
 Spacecraft Discrete Interfaces standard
- After many discussions it was finally decided
 to issue a dedicated SAVOIR document,
 SAVOIR TM-002, to guide future UART implementations

SAVOIR UART protocol and interface specification

 Prepared by Reference
 SAVOIR

 Lissue
 1

 Revision
 0

 Date of Issue
 03/08/2018

 Status
 Draft

 Document Type
 Technical Memorandu Distribution

 Distribution
 K-Member States

European Space Agency

esa

SAVOIR | Torbjörn HULT | ADCSS 2018 | 2018-10-16 | Pag. 2 ESA UNCLASSIFIED – For Official Use

Guidelines for when to use a UART

- Used when data rates are below 100 kbps for a single device
- Used when the total quantity of platform sensors/actuators having a UART interface is less than about 20
 - UARTs are point-to-point links and require more hardware in the RTU and more harness for each device
 - Typical spacecraft usage today is less than 5 units.
- Used for devices where low power consumption and low mass is required
- Note: A UART link is controlled by the RTU in the SAVOIR architecture. The OBC is not required to have any UART links.
- Beware of: Total UART capacity depends on the C&C link used to the RTU. If 1553 is used the total UART traffic must be included in the overall 1553 traffic.

The UART in a system

According to Figure 1 in ECSS-E-ST-50-14C

The names CE (Core Element) and PE (Peripheral Element) are used extensively in the specification.

UART physical layer

- Based on ECSS-E-ST-50-14C terms and clause 8.8 physical layer:
 - Relaxed impedance matching and ground displacement voltage requirements (±1 V)
 - Drive current characteristics more detailed
 - Up to 16 m cable
 - Recommend to use a 9-pin connector at PE side
 - Optional cross-strapping at CE side to simplify sensor/actuator design

PE = Peripheral Element

ASDI = Asynchronous Serial Digital Interface

Transmitter characteristics

TRANSMITTER TX CIRCUIT						
Ref	Characteristics	Value	AD	Note		
Tx1	Electrical characteristics	Differential	=AD1 =AD2			
Tx2	Differential output voltage open circuit, Voc	Voc ≤ 5,5 V	<ad1 <ad2< td=""><td>Note 1 and 9</td></ad2<></ad1 	Note 1 and 9		
Tx3	Differential output voltage at $2k\Omega$ load, V_{L1}	V _{L1} ≥ 1,70 V	≠AD1 ≠AD2	Note 1, 2 and 10		
Tx4	Differential output voltage at 120Ω load, V _{L2}	V _{L2} ≥ 0,90 V	≠AD1 ≠AD2	Note 1 and 10		
Tx5	Output current at output short circuit, I _{SC}	15 mA ≤ I _{SC} ≤ 55 mA	≠AD1 <ad2< td=""><td>Note 1 and 10</td></ad2<>	Note 1 and 10		
Tx6	Differential output impedance, Zout	$Z_{OUT} \ge 100 \ \Omega$	>AD1 ≠AD2	Note 1, 3 and 10		
Tx7	Common mode output voltage at 120Ω load, V _{OS}	Vos ≤ 3 V	≠AD1 <ad2< td=""><td>Note 10</td></ad2<>	Note 10		
Tx8	Output voltage TRUE and COMP lines, Ve	0 V ≤ Ve ≤ 5,5 V	<ad1 <ad2< td=""><td>Note 9</td></ad2<></ad1 	Note 9		
Tx9	Short circuit output current, I _A	I _A ≤ 150 mA for each terminal to ground	=AD1 =AD2			
Tx10	Rise (and fall) time, $t_{\rm R}$	$\begin{array}{l} t_R \leq 0,1 \times t_B \text{ if } t_B \geq 200 \text{ ns} \\ t_R \leq 20 \text{ ns if } t_B \leq 200 \text{ ns} \\ \text{CE: } 1/t_B = \max \text{ baud rate} \\ \text{PE: } 1/t_B = \text{ selected baud rate} \end{array}$	=AD1 =AD2	Note 4		
Tx11	Output leakage current in power off, $I_{\rm O}$	I ₀ ≤ 100 µA	=AD1 =AD2	Note 5		
Tx12	Fault voltage emission, V _{SFE}	$0 V \le V_{SFE} \le 7 V$ (through 50 Ω minimum series resistance)	=AD1 ≠AD2			
Tx13	Fault voltage tolerance, V _{SFT}	-1,5 V \leq V _{SFT} \leq 7 V (applied through 1 k Ω series resistance R _{IS})	=AD1 ≠AD2			

AD1 = ECSS-E-ST-50-14CAD2 = ANSI/TIA/EIA-422-B

SAVOIR | Torbjörn HULT | ADCSS 2018 | 2018-10-16 | Pag. 6

ESA UNCLASSIFIED – For Official Use

Receiver characteristics

RECE	EIVER RX CIRCUIT				
Rx1	Electrical characteristics	Differential	=AD1 =AD2		
Rx2	Discrete series protection, R _{IS}	2 * 1 <u>kΩ</u>	=AD1 ≠AD2	Note 6	
Rx3	Max input voltage (each input w.r.t. ground), Vi	-1 V ≤ VI ≤ +6,5 V	>AD1 >AD2	Note 11	
Rx4	Common mode acceptance (V1+V2)/2, V _{CM}	-1 V ≤ V _{CM} ≤ +4 V	>AD1 >AD2	Note 11	
Rx5	Differential input voltage, V _{DI}	$600 \text{ mV} \leq V_{DI} \leq 5,5 \text{ V}$ each ± voltage in this range must be interpreted as valid signal	>AD1 ≠AD2	Note 7 and 9	
Rx6	High voltage input load, I _{INHV} , at V _I = 6,5 V	0 mA ≤ I _{INHV} ≤ 1,625 mA	≠AD1 <ad2< td=""><td>Note 8 and 9</td><td></td></ad2<>	Note 8 and 9	
Rx7	Low voltage input load, I _{INLV} , at V _I = -1 V	$-1,25 \text{ mA} \le I_{\text{INLV}} \le 0 \text{ mA}$	≠AD1 >AD2	Note 8	
Rx8	Unconnected input voltage, VINUL	0 V ≤ V _{INUL} ≤ 4 V	≠AD1 >AD2	Note 8	
Rx9	Fault voltage emission, V _{RFE}	$0 V \le V_{RFE} \le 5.5 V$ (through 1 k Ω series resistance R _{IS})	=AD1 ≠AD2		
Rx10	Fault voltage tolerance, V _{RFT}	-1,5 V ≤ V _{RFT} ≤ 8,5 V	=AD1 ≠AD2		

AD1 = ECSS-E-ST-50-14C AD2 = ANSI/TIA/EIA-422-B

> ±1,5V ground potential difference allowed

SAVOIR | Torbjörn HULT | ADCSS 2018 | 2018-10-16 | Pag. 7

ESA UNCLASSIFIED – For Official Use

UART character layer (part of data link layer)

- Characters and BREAK defined.
- Even parity recommended
- Baud rates of 19,2k, 115,2k and 460,8k recommended.
 9,6k, 38,4k, 57,6k and
 230,4k allowed
- Baud rate tolerances, start bit transients, skew, signal transition oscillations and receiver margins defined in detail. The figure shows the receiver character timing.

UART frame layer (part of data link layer)

T = Transaction ID, copied from CMD to RSP

UART frame layer - upper layer interface

- The CE Frame Layer interface to upper layer includes the following:
 - Cargo of CMD messages for transmission
 - Transaction ID for transmission
 - Cargo of RSP messages received
 - Received Transaction ID
 - Frame Layer RSP error events
 - Command communication synchronisation (BREAK)
 - Command Autobaud Sequence (including BREAK)
 - Command Autobaud Character only
- The PE Frame Layer interface to upper layer includes the following:
 - Cargo of CMD messages received
 - Cargo of RSP messages for transmission
 - Frame Layer CMD error events

UART frame layer options

- Pipe-lining allows full bandwidth utilisation with relaxed timing constraints for instance when loading or dumping PE memory
- Future protocol extensions using the reserved I-field values 10_B and 11_B are e.g.:
 - Addressing multiple PEs on a single RS-485 link
 - Adding data field headers
- Auto-baud function using BREAK + 55_H character allows for simple oscillators in the PE

Contact

Feedback: savoir@esa.int

SAVOIR | Torbjörn HULT | ADCSS 2018 | 2018-10-16 | Pag. 12 ESA UNCLASSIFIED – For Official Use