

European Space Agency

Command & Control Interfaces: Status quo and medium/long term evolution (Earth Observation views)

Avionics, Data, Control and Software Systems (ADCSS)

+

Presented by J. Rosello Technology Coord. & Frequency Mngt Section (ΕΟΡ-ΦΜΤ) ΕΟ Future Missions & Instrument Division (ΕΟΡ-ΦΜ) (17-Oct-2018)

ESA UNCLASSIFIED - For Official Use

Table of Content

Earth Observation (EOP)

- Programmes & Technology Needs

EOP & Data Handling

- Data Handling needs
- Examples

Conclusion

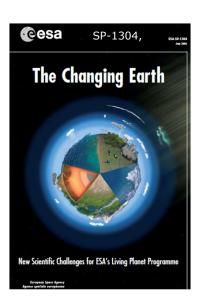
ESA UNCLASSIFIED - For Official Use

Living Planet Programme

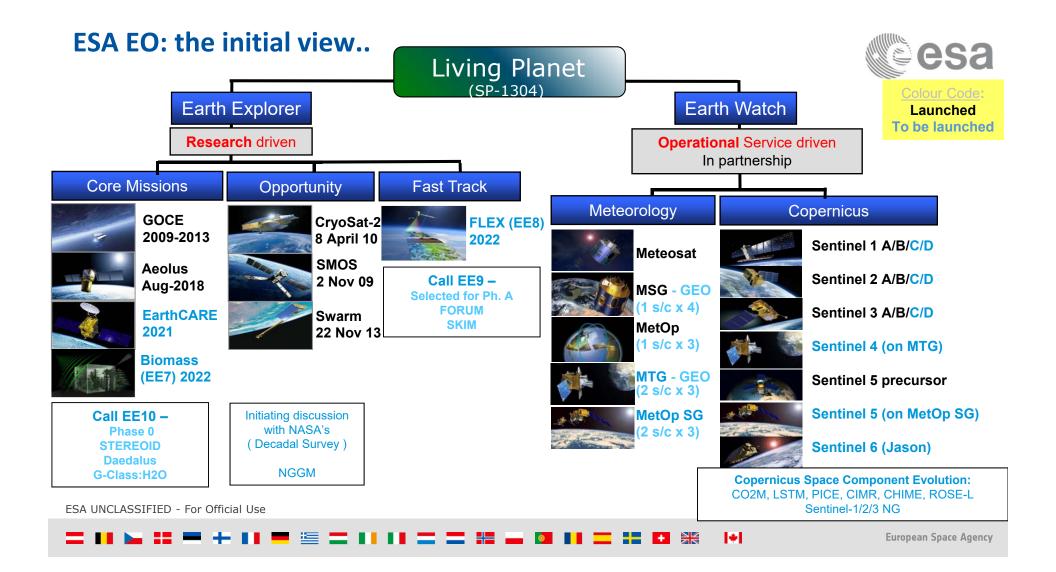
ESA develops world-class EO systems to address

- the scientific challenges identified in the Living Planet Programme (SP-1304)
- other societal challenges, particularly with European + global partners.

LIVING PLANET: <u>user driven</u> + with wide-ranging innovations. Two broad lines:


- **Research missions** : research driven + demonstrate new EO techniques. Its main part: Earth Explorers (EE)
- Earth Watch missions driven by operational services + developed with/for partners
 - EUMETSAT for meteorology
 - EU for the Copernicus programme.

Successful paradigm of end-to-end mission-orientated innovation


i.e. : science + mission concept +technology

ESA UNCLASSIFIED - For Official Use

Scientists Agencies **EOP Users EO** organisations Institutions (e.g. (e.g. GCOS: Global EUMETSAT. EÙ/ĔC. Climate Observing space agencies) System)

EO Technology needs

Higher performance / cost ratio

- Higher spatial and temporal resolution
- Higher lifetime (7 yrs \rightarrow 10 yrs or more)
- Increased flexibility (advanced manufacturing, re-programmable onboard, COTS)
- Long-term continuity of data \rightarrow BIG DATA
- Platform
 - Stronger performance than Telecom (e.g. AOCS, OB data storage, multi-Gb/s comms)
 - Lower recurring cost support standardisation + modular approach + digitisation
- Miniaturisation and constellations (incl. convoys and formations)
 - More autonomous operations (like Telecom and NAV)
 - Distributed Ground Segment
 - Synchronisation (with ISL beacon and/or with GNSS)
 - Launcher techno for efficient access to space
 - lower cost, fast-to-market ability, adaptability and flexibility.

Mainly, but NOT LIMITED to LEO: also High-Elliptic (HEO) and GSO (e.g. G-Class EE-10).

ESA UNCLASSIFIED - For Official Use

Specifically to Data Handling and Next Generation EO

HIGHER DATA RATES

- X-band uplink (7.190 7250 GHz) → <u>2 Mb/s TT&C</u> (> 10x than in S-band)
 - Needed for Copernicus convoy / fleet \rightarrow less G/S to command them
 - Affects all O/B comms from SMU (OBC + TTC) to the rest of the satellite
 - 1553 / CAN (1 Mb/s) SpW (multi Gb/s, but not deterministic)
- K-band downlink (25.5 to 27 GHz) → 3 Gb/s (one channel) → up to > 10 Gb/s (dual pol, 2 channels x pol.)
 - Needed for example in:
 - Copernicus (e.g. CO2M spectrometer, Hyperspectral CHIME, ROSE-L band SAR, S1-NG, S2-NG)
 - EE-10 (e.g. Bi-static SAR passive companions of Sent.1)
 - Variable Coding + Modulation (VCM) \rightarrow variable rates (constant within the CCSDS frame)
 - from QPSK to 64-APSK \rightarrow allows flexibility wrt atmospheric conditions
 - Extension to ACM (A=Adaptive) → real-time TC uplink needed to close the loop
 - Details at Appendix-G of https://www.ioag.org/Public%20Documents/2016-11-18_LEO26SG_Final.pdf
 - Affects Solid State Mass Memories

HIGHER FUNCTIONALITY / RELIABILITY

- PUS + CFDP \rightarrow and perhaps CCSDS DTN (due to K-band sensitivity to atmospheric conditions and use of multiple G/S)

LOWER COST (per platform \rightarrow opening to constellations) :

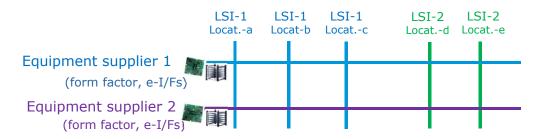
- standardisation + modular approach + digitisation
- fast-to-market ability, adaptability and flexibility (re-programmable OB, COTS)

ESA UNCLASSIFIED - For Official Use

 European Space Agency

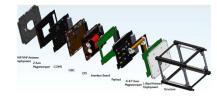
ESA | 17-Oct-2018 | Slide 6

Optimise Standard Platform → more resources for the Payload

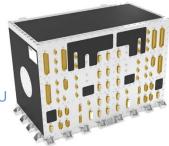

Platform Needs:
 Architecture evolution

 Miniaturisation (units → boards → components)
 more Integration (AIT) → potential savings

- o Digital Interfaces : shifting intelligence-location & less cables
- Higher performance (2 Mb/s) + functionality (e.g. CFDP)

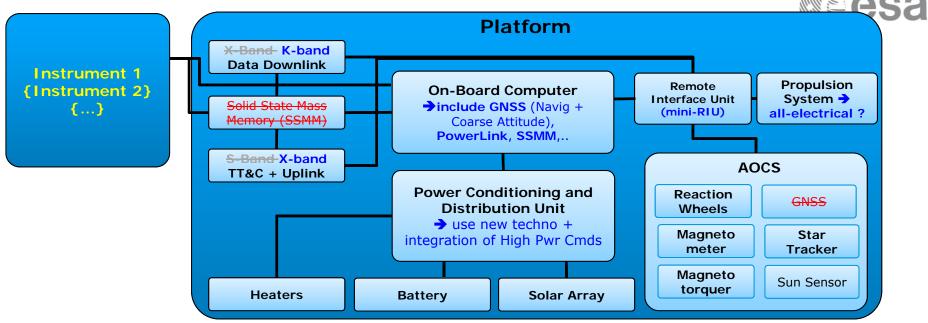

• Standardisation:

- o Common interfaces (electrical & mechanical form-factor)
- Multi-source suppliers :
 - ✓ interchangeable modules
 - ✓ newcomers (incl. COTS)



ESA UNCLASSIFIED - For Official Use

Standardisation done for Cubesats \rightarrow big success


Multi-board SMU: OBC, GNSS, SSMM, mini-RIU

= 88 🛌 == += 88 💻 🔚 == 2 88 88 == 38 == 38 88 == 38 88 == 10

ESA | 17-Oct-2018 | Slide 7

Possible Architecture evolution

Avionics architecture evolution:

• Higher frequencies Comms (more BW & data) & higher speed and more digital I/Fs

 \circ 2 Mb/s TT&C in X-band \rightarrow useful for convoys like multi-Sentinel(s) : less G/S to command them

 o digitize / standardize discrete interfaces → simplify RIU & harness → reduce mass/volume • PowerLink could be the solution (also enabler for decentralize intelligence)

○ Integrate more (e.g. GNSS and/or Mass Memories in OBC) → less AIT

o Impact of COTS ESA UNCLASSIFIED - For Official Use

ESA | 17-Oct-2018 | Slide 8

■ ≔ = !!!!! = = = # _ 0 !! = # !! * +

EO activities

EOEP-5 funding System studies \rightarrow Roadmap for standardisation :

- 3 x 2 M€ studies : EO Standard Platform for Copernicus
- 2 x 400 k€ studies : Data Handling Roadmap

but

- GSTP should (co-) fund the Module Developments (e.g. GNSS Rx board)

Standard EO Platform study

- Budget : 2 M€ x 3 parallel contracts (1 Airbus + 1 OHB + 1 TAS)
 - Negotiations in Oct. 2018 completion in Dec. 2019
 - Includes a provision of 300 k€ in each contract for equipment suppliers
- Focus only on Copernicus Evolution (not NewSpace or EarthExplorer)
 - complementing the 6 High Priority Candidate Missions that started Ph. A in 2Q-2018 (i.e. CO, LSMT, CMIR, P-ICE, CHIME, ROSE-L) and will be completed end-2019.
 - Sentinel 1,2,3 Next Generation also considered
- Broader scope than the Data Handling Roadmap (in next slide):
 - Avionics commonalities (only for the above Copernicus Evolut.) this part complements the DH Roadmap
 - Debris mitigation
 - Standardisation of space to ground interfaces, including
 - X-band TT& @ 2 Mb/s + K-band data downlink @ multi Gb/s
 - Protocols : e.g. PUS, CFDP, questions on DTN, etc.
 - Payloads of opportunity
 - Others

ESA UNCLASSIFIED - For Official Use

ESA 17-October-2018 Slide 10

I II ≥ II = + II = ⊆ I II II = Ξ II = II = II = II ...

Data Handling RoadMap for EO - activity

Definition/roadmap for an advanced Data Handling architecture for EO satellites -

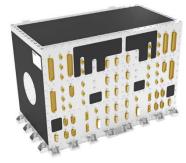
- 400 k€ funded by EOP KO in Oct-2018 Duration 18 months duration
- 2 parallel contracts (to facilitate standardisation in a shared Workshop in Task-4)
 - with TAS : Ctrct 4000124947
 - With RUAG + Airbus : Ctrct 4000124946
- Scope:
 - Standardise modularity (boards, including all electrical and mechanical form factor)
 - Special focus on <u>SMU, RIU and SSMM</u> (and interfaces)
 - Considering 2 Mb/s TT&C → only SpW seems to sustain it, but what about determinism ?
 - Protocols : PUS / CFDP / questions on DTN ?
 - multi Gb/s data downlink → SSMM, SpFi equivalent Interfaces
 - Central vs decentralised intelligence (with microprocessor in nodes & digitised I/Fs like PowerLink)
 - **Roadmap** for future developments (e.g. OBC board, TT&C board, GNSS board, Mass Memory board)

ESA UNCLASSIFIED - For Official Use	ESA 17-October-2018 Slide 11
	European Space Agency

Two development examples

Integration of more functions under SMU (funded under EOEP)

<u>PowerLink</u> (co-funded EOEP + TRP)

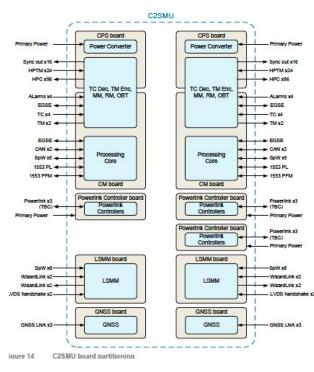


C2SMU - activity completed in 2Q-2018 C2SMU : Complex S/C Management Unit

250 k€ funded by EOEP-5 (ESA Ctrct 4000112458) with RUAG SE

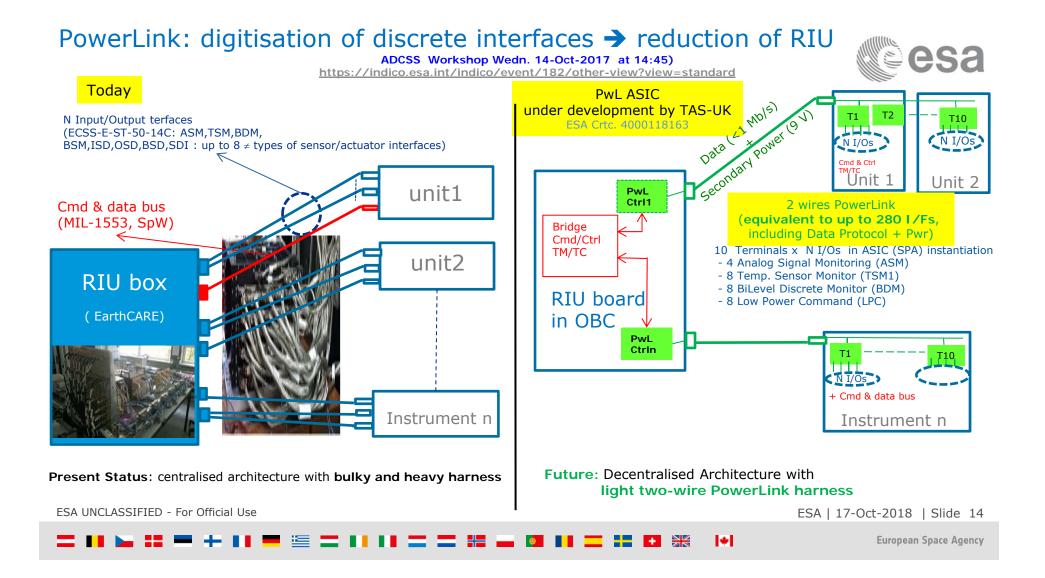
Scope:

- Assess integration of multiple developments:
 - OBC with Creole ASIC done under GSTP by RUAG-Sweden
 - GNSS (AGGA-4 based) board from RUAG-A
 - Large Mass Memory (multi-source possible)
 - PowerLink concept
- Prepare a development roadmap



12

_


+ +

Extract from Final Report

ESA UNCLASSIFIED - For Official Use

ESA 17-October-2018 Slide 13

Specifically to Data Handling and Next Generation EO

HIGHER DATA RATES

- X-band uplink (7.190 7250 GHz) → <u>2 Mb/s TT&C</u> (> 10x than in S-band)
 - Needed for Copernicus convoy / fleet \rightarrow less G/S to command them
 - Affects all O/B comms from SMU (OBC + TTC) to the rest of the satellite
 - 1553 / CAN (1 Mb/s) SpW (multi Gb/s, but not deterministic)
- K-band downlink (25.5 to 27 GHz) → 3 Gb/s (one channel) → up to > 10 Gb/s (dual pol, 2 channels x pol.)
 - Needed for example in:
 - Copernicus (e.g. CO2M spectrometer, Hyperspectral CHIME, ROSE-L band SAR, S1-NG, S2-NG)
 - EE-10 (e.g. Bi-static SAR passive companions of Sent.1)
 - Variable Coding + Modulation (VCM) \rightarrow variable rates (constant within the CCSDS frame)
 - from QPSK to 64-APSK \rightarrow allows flexibility wrt atmospheric conditions
 - Extension to ACM (A=Adaptive) → real-time TC uplink needed to close the loop
 - Details at Appendix-G of https://www.ioag.org/Public%20Documents/2016-11-18_LEO26SG_Final.pdf
 - Affects Solid State Mass Memories

HIGHER FUNCTIONALITY / RELIABILITY

- PUS + CFDP \rightarrow and perhaps CCSDS DTN (due to K-band sensitivity to atmospheric conditions and use of multiple G/S)

LOWER COST (per platform \rightarrow opening to constellations) :

- standardisation + modular approach + digitisation
- fast-to-market ability, adaptability and flexibility (re-programmable OB, COTS)

ESA UNCLASSIFIED - For Official Use

 European Space Agency

ESA | 17-Oct-2018 | Slide 15

Conclusion

EARTH OBSERVATION :

- TECHNOLOGY NEEDS: Higher performance / cost ratio + Opening up to constellations (Space 4.0)

EOP & DATA HANDLING

- Higher data rates : <u>2 Mb/s (X-band TT&C)</u> + multi-Gb/s (K-band downlink)
 - Implications in the OB Data Handling too (e.g. SpW deterministic or faster Bus)
- Higher functionality / reliability \rightarrow higher protocols (PUS, CFDP, DTN)
- Lower Cost \rightarrow modular approach (miniaturisation, digitisation of interfaces,) where possible
 - Architectural evolution (further integration, digitisation of I/Fs, (de-)centralised intelligence)
 - Standardisation (e-I/Fs + form factor) of modules → multi-suppliers + anticipation of AIT
- On-going System studies in 2019 to build up Roadmap →
 - o 3 parallel studies (Standard EO Platform) under Copernicus
 - 2 parallel studies (Data Handling Roadmap) to enforce the DH standardisation (incl. workshop in 2019)
 - → Leading to development of modules in 2020+

ESA UNCLASSIFIED - For Official Use

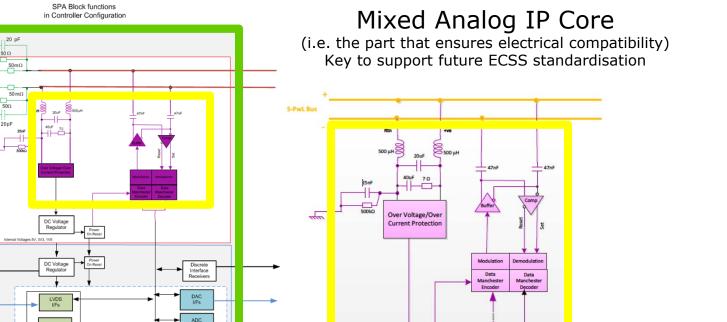
THANK YOU

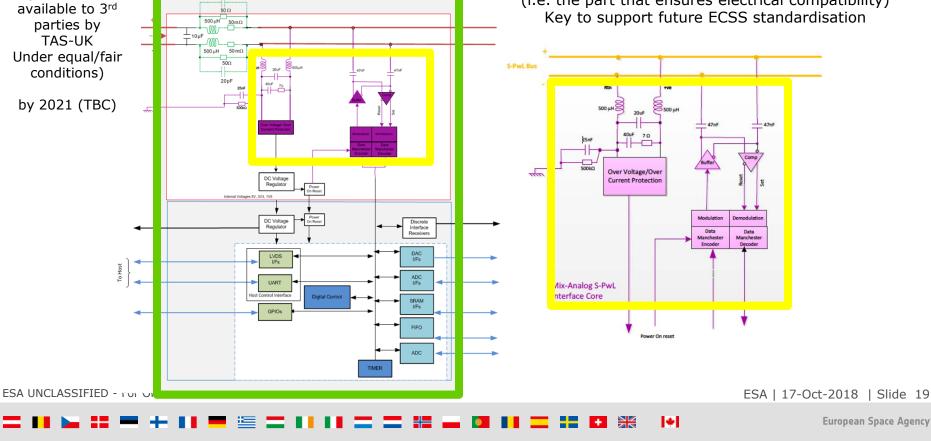
QUESTIONS ?

Contact: Josep.Rosello@esa.int | Tel: +31 71 565 4058

ESA UNCLASSIFIED - For Official Use

BACKUP slides


ESA UNCLASSIFIED - For Official Use


Two "building block" outputs of the Powerlink activity

SPA ASIC

(to be made

esa

