
EDS for complex hardware units, what is needed and how do we generate them efficiently?

Torbjörn Hult 18 October 2018

Today's ICDs for complex units

- The On-Board Computer (OBC) and the Remote Terminal Unit (RTU) are two of the most complex units in a spacecraft platform.
- The ICDs for these units are today up to180 pages, typically split in:
 - -60/100 (OBC/RTU) pages of connector information like type, pinout and electrical I/F
 - 10/45 pages of interface drawings
 - 1/1 page of unit grounding diagram
 - 1/1 page of unit block diagram
 - 50/10 pages of functional interfaces, many data structures are not PUS packets but software structures available in the Boot S/W. 20 of these pages are just to describe the configuration of the FDIR mechanisms, i.e. the OBC Reconfiguration Module.

- 10/10 pages of TM/TC lists 2 | ADCSS 2018 | 18 October 2018

How is the "paper version" ICD generated?

- Parts of the ICDs are generated manually based on:
 - An existing ICD template for the product type or an existing ICD for the latest most similar product of the same type.
 - Unit specific configurations taken from internal and customer specifications.
 - Unit circuit diagrams.
 - -Boot software ICD.
- Connector lists are generated automatically from the design data base into a Word document

3 | ADCSS 2018 | 18 October 2018

OBC HW/SW ICD

- Used internally by the OBC supplier for development of Boot S/W and Hardware Driver S/W
 - -Automatically generated from the ASIC design data base
- Used by the OBC simulator developer
 - Manually generated pdf document
 - Includes the subset of the OBC registers used by the Boot and the HDSW
 - Providing all registers to the simulator developer would result in a very complex and expensive simulator
- HDSW ICD towards the Central Software is automatically generated and provided also as high level language structures in source code.
 - Can be difficult to understand for the typical system engineer

Together ahead. **RUAG**

4 | ADCSS 2018 | 18 October 2018

EDS already being used for the RTU

- Generated in Sentinel-3, ExoMars TGO and MetOp SG (Excel or XML)
- Contains about 25 sheets
- Largest sheets:
 - Pin allocation, 3000 entries
 - Command message format, 600 entries
 - -Acquisition message data, 400 entries
- No common EDS structure between the three programmes
 - Sentinel-3 and ExoMars TGO have the same basic I/O system but the EDS formats are different
- The RTU User Manual is still needed to understand the data in the EDS
- The RTU sometimes moves/converts data on one link to data on another link, e.g. UART data are converted to 1553 data. This can be difficult to model.

Together ahead. **RUAG**

5 | ADCSS 2018 | 18 October 2018

Problems with current EDS process

- No standard EDS format
 - Too time consuming to develop automatic EDS generation \rightarrow human errors still possible
 - Difficult to reuse manually generated EDS data between projects or customers
 - Difficult to predict who makes most manual errors, equipment supplier or prime
- How do we enter the required drawings?
 - -As netlists?
 - Which netlist format? PSPICE?
 - -As JPEG images?
- How do we model complex behaviour like state machines with conditions?
 - Today we have something like:

ElectricalMode_Transition_	ElectricalMode_Transition_	ElectricalMode_Transition_	ElectricalMode_Transition_	ElectricalMode_Transition_
from_Mode	to_Mode	Description	Type	Time
[Definition]		any description for the mode transition, not the mode	[Definition]	[ms]

6 | ADCSS 2018 | 18 October 2018

Desired state

- An agreed EDS format is widely spread in all projects
 - Makes it possible to develop tools for automatic EDS generation
- A simple and understandable format for modelling state machines is agreed
 - Makes it possible to manually convert state diagrams to text
 - Allows for future developments of tools for automatic EDS generation from state machine definitions
- Interface drawings are not needed
- Grounding diagrams can be replaced by a parameter for each interface type

7 | ADCSS 2018 | 18 October 2018

•Questions ?

8 | ADCSS 2018 | 18 October 2018