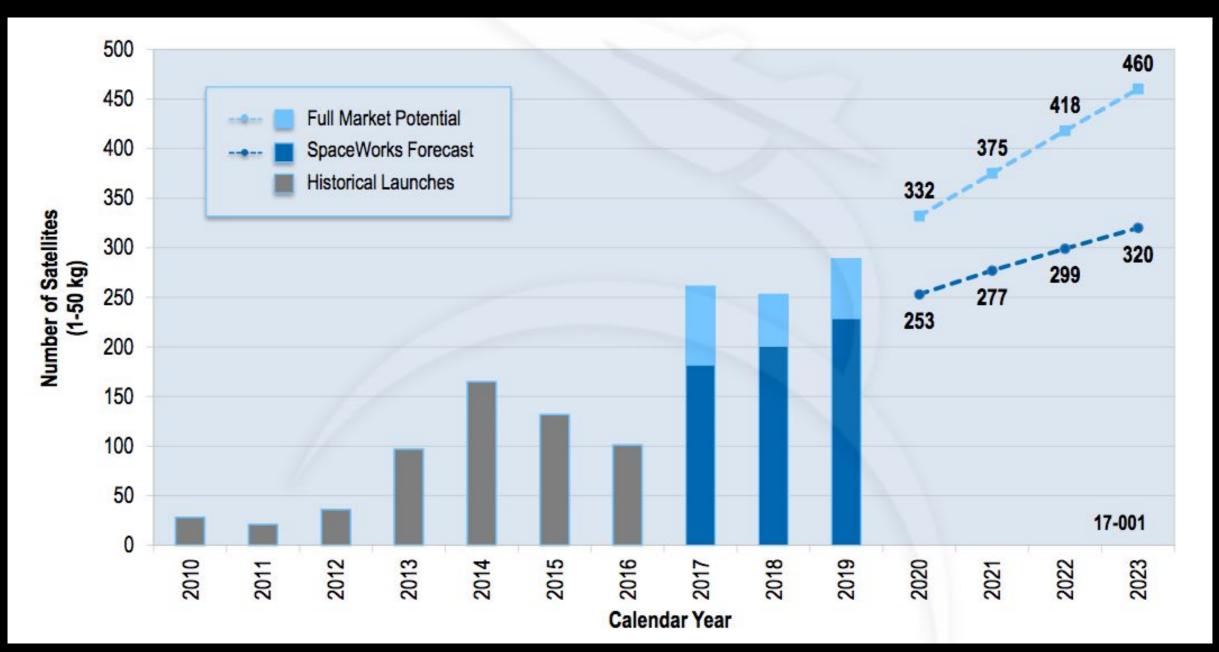


Development of Electronic Data Sheets for Model-Based Systems Engineering

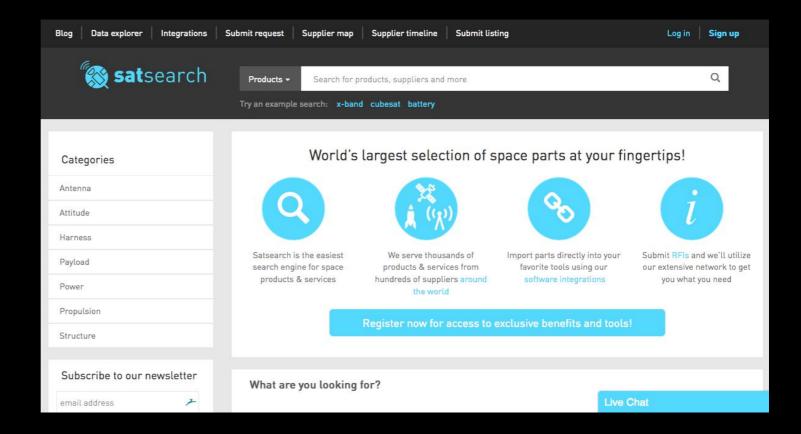
ADCSS2018 ESA/ESTEC Noordwijk, the Netherlands Kartik Kumar, Co-founder & CEO kartik@satsearch.co +31 6 14634697


Engineers lose time finding the right parts

Search in the space industry is broken

Industry growth makes search harder

SpaceWorks 2017



A *marketplace* that indexes the global space supply chain

Find the right suppliers

<u>Understand</u> your customers

<u>Design</u> better space missions

satsearch.co

Our platform is growing

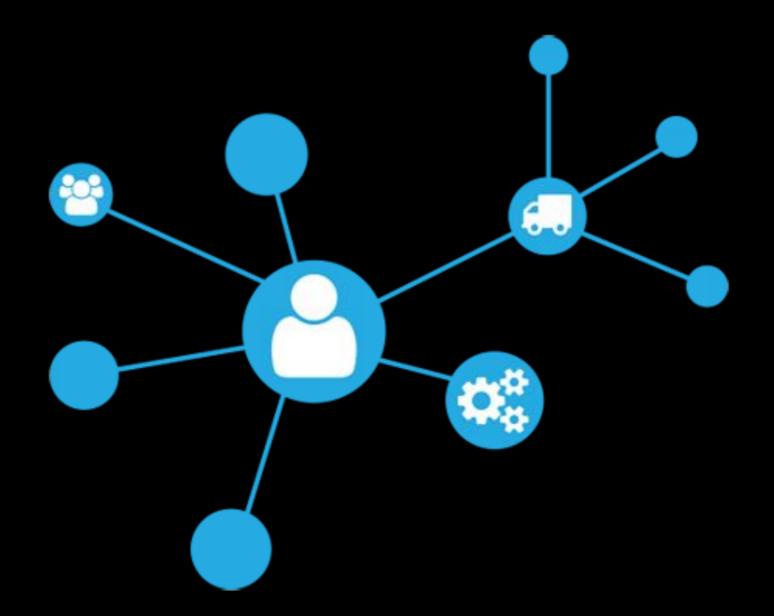
10,000+ suppliers worldwide

The team behind satsearch

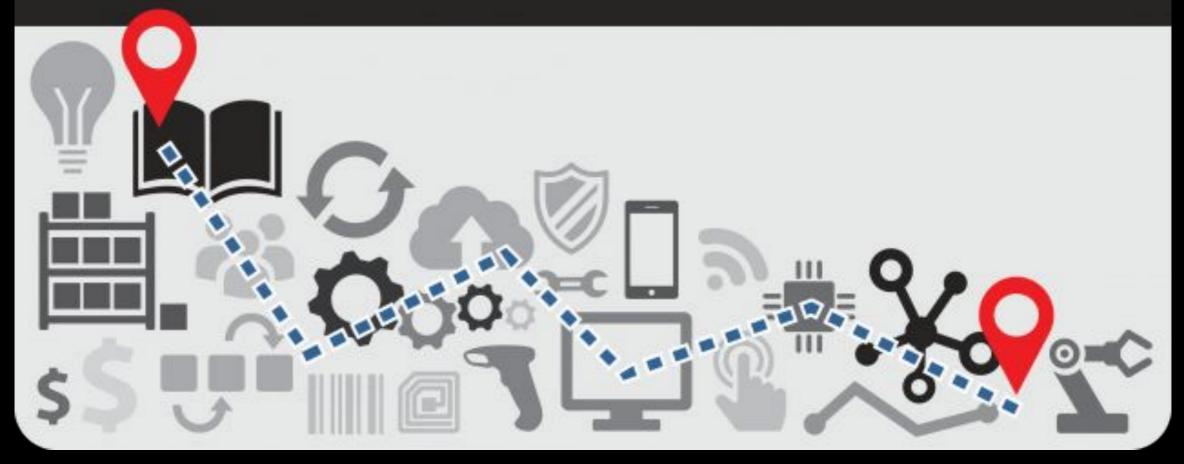
Kartik Kumar CEO

Alberto Vaccarella CTO

Narayan Prasad COO



An open supply chain is essential for growth



We deliver global supply chain intelligence

Supply chain digitalization is the future

The Digital Supply Chain Transformation

Source: AudreyCox, 2018

Knowledge is locked in "messy" documents

'Green' High-Performance Propulsion for MicroSats

HYDROS-M provides: high impulse, high thrust, flexible propulsion, and deliveres 'bolt-on' orbit agiit for MicroSats. HYDROS-M is powered by a safe, storable, and non-toxic 'green' propellant - water which is electrolyzed on orbit to deliver high performance bipropellant propulsion.

Capabilities

HYDRCS is a novel high-TRL propulsion architecture that uses a hybrid electrical/chemical scheme to provide small spacecraft with both high thrust (> 1.5 N) and high p (2 310 s) propulsion. HYDROS propulsion systems enable secondary payloads to perform missions requiring orbit agility and large ΔVs while launching with the ultimate 'green' propellant: water. Once on orbit the HY-DROS system splits the water propellant using electrical power to produce hydrogen and oxygen gas which is then combusted in a bipropellant thruster.

- Sized to fit within the keep-in zones of 15" diameter launch vehicle separation ring.
- Flexible system CONOPS allows HYDROS to scale performance to meet mission imposed power limits.

HYDROS-M delivers high performance bipropellant pro- > 3 year LEO mission design life

satsearch PHASEFOUR

RFT

Overview

RET uses RET waves to efficiently ionize and then heat xenon plasma, causing it to expand themsily. As the heated propelant expands culward, the thruster uses magnetic helds to chect the xenon plasma out of the thruster unice producing thrust.

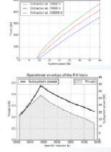
Characteristic	Unit	Specification
Thrust	Mr	1 - 15
Thrust to Power Ratio	mNkW	10 - 150
Specific Impulse	5	500 - 1,000

Plug and Play Solution for CubeSats

The following specifications represent our pug and play solution, which includes a

Characteristic:	Unit	Specification	
Total Impulse	N+a	5,000	
Delta-V*	m/s	1,000+	
Dry Muss'	kg	1.0 1.5	
Propellant Mass (Xenon)	grams	500	
System Volume**	U	0.5-1.0 + "tuna can	

Taking orders now Ready for flight 2018



Properties and Performance

While the required power to operate the IFM starts at around 6 W, at higher thrust levels one can choose between high finute and high specific impute operation. The IFM 360 can operate at an iso range of 2000 to 5000 s. M any given thrust point, higher lap operation will increase the total impulse while it will also increase the power demand. The thruster can be operated along the full dynamic range throughout the mission. That means, that high Iso and low Iso maneuvers can be included in a mission planning, as well as high thrust cripit maneuver and low thrust precision control maneuvers

Parameter	Value
Dynamic thrust range	10 µN to 0.5 mN
Nominal thrust	360 µN
Specific impulse	2,000 to 5000 s
Propellant mass	260 g
Total impulse	more than 5,000 Ns
Power at nominal thrust	35 W incl. neutralizer
Outside dimensions	94 x 90 x 78 mm
Mass (dry / wet)	640 / 870 g
Total system power	8 - 40 W
Hot standby power	3.5 W
Command interface	R3422/F.3485
Temperature envelope (non-operational)	-50 to 120°
Temperature envelope (operational)	-20 to 50 *C
Supply voltage	12V, 28 V, other voltages upon
	request

A AMR

The IFM Nano thruster can be clustered in order to meet any specific mission need. As we are using a number of pre-qualified modules (building blocks), this customization can be done without increasing the cost or lead times of the thruster.

Monopropellant Thrusters

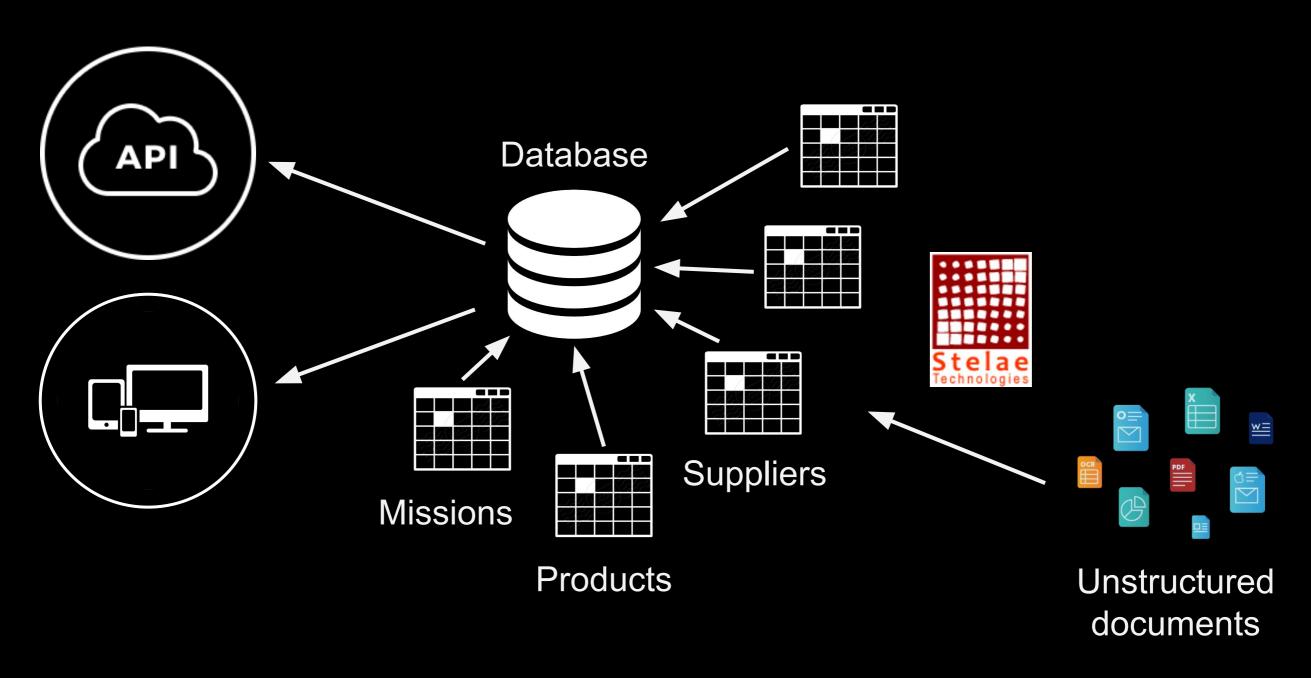
Performance Characteristics							
Baylon	MONARE:1	MARICA	MONANC 22-8	MONARC 22-12	MUNAN OUT		MONATO 446
Shaciy State Timust	C.25 TM (TM) GEOFF paid	1.0 H (8.5 N) 6005 pair	5 to 35 tq 60275 pak	5 H (734) 8190 piss	30 td 50 4) G 235 pea	26 lar (17 6 fs) di 256 pale	100 Nr (442A) 42 275 polo
ied Prozri	20 – 600 pris (4.8 – 27.3 km)	90 – 621 prin (5.2 – 210 Lu)	2) – 900 prin (4.8 – 27.8 bar	76 – 400 pota (4.6 – 27.6 km)	90 – 400 pais (5.5 – 27 B (se.)	66 – 370 pds (5.5-25,5 bo)	70 - 1 00 pois (4.5-27.5 be)
Vesde Espanion	57:1	1351	BE-1	101	4011	50:1	50:1
Walte France	18 water	18 wats	30 malar	Xeeds	72 wide	72 with	58 water
Mass	8.83 to \$1.00 kg	1.00 tarr () 49 sg	1.68 bm (0.72 kg)	1.51 bm () (c) (c)	2.67 bin (1.12 kg)	2.47 by (1.12 kg)	35 tim (1.6 kg
English ang thi Sale (News	52 in (15 mi)/ 2 it (15 mi)	84 in [81.8 cm] 71 in [2.5 cm]	8 = 20.3 m(; 15 = 0.5 cm	lin(22.0 m)/ 12 in(53.00)	12 in (80 cm) / 3.3 in (84 cm)	12 in (30 cm)/ 3.3 in (8.4 cm)	18 n 41 cm)/ 5.8 n 14.8 cm)
Spielle inpulse	227.5 me	255.1 was	229 S awa	228.1 sea	221 65	231.0 war	204 B race
Minimum Impanie BR	0.0008/b-sac (2.6mK-sac)	0.0007 trivers (II 1 mil-sec)	0.071 d-se; (313m N-se;)	0.17 B/resu \$250mH-resid	DC4 billions (1.0 N-sec)	(.20 bi-sec (1.16 M-sec)	2.39 M-ws. (11.52 N-esc)
Tit-I mode	25,000 to eac (111,250 ft exc)	TRECOUNTED	130 (00) 85 ex (533,734 8 ext)	200,750 fallers (1,173,006 ft-csq	706,000 3,600,000 N-560	459 100 BH ext (2.042 178 5 ox)	1,2521.00 EH-08 (5,600,000 H-08)
Pubes	3/5.200	201.105	230,000	160,000	92000	70,003	12,000

Monopropellant Thruster Valves

Performance Characteristics					
Characteristic	0.17 lbf (0.75 N) Thrust Single Seat	9.2 lbf (1 M) Thusi Redundant Scal	9 lbf (40 N) Threst Single Seat	150 lbf (711 N) Thrust Single Seat	
Max Operating Pressure, MECP (ps albeit)	386 ps.n	400 07.0	500 (34.5)	276 (19)	
Proof Pressure (pokulturi)	886 (61.1)	1900 (100-4)	1900 (103)	450 (31)	
Burst Pressure (poliuitari)	1486 (102.5)	2650 (182.8)	291 ((200)	715 (49.3)	
How Coefficient (DFN water [self *0.5]	0.00003	0.0004	0.5013	0.019	
Operating Voltage Pange (Vit.)	24 to 32	24 to 37	22 n 32	98 to 136	
Mainun Open Requiree Tine (nead)	1	10	15	30	
Meximum Chee Response Time (meet)	1	10	-5	20	
Power Consumption (wells)	10.4 at 32 Vdc, 40F	B.19 st 25 Vac. 45F	26.5 at 32 Val., 707	122 at 136 Was, 70F	
Leakage per Seet, Internal (sochri)	6.4	0.4	0.2	36	
Leakage, Forental (900%)	15-6	16-6	1F-6	15-3	
Dycie Life (cycles)	1.000,000	1,000,000	100,000	100000	
Weight [thm (gram() cacheting leadwises	0.067 (50)	8.48.918	0.5 (230)	25 (1134)	
Not Effection [micros absolute rating]	ts.	50	25	25	
Operating Temperature Bange [F (TO)]	40 to 300 (4.4 to 149)	40 to 300 pt.4 to 149	40 to 300 (4.4 to 14%)	40 to 300 (4.4 to 149)	
Representative Model Numbers	-051-271	-051-3460	51-258	53-2918	

Solution: conversion to Electronic Data Sheets

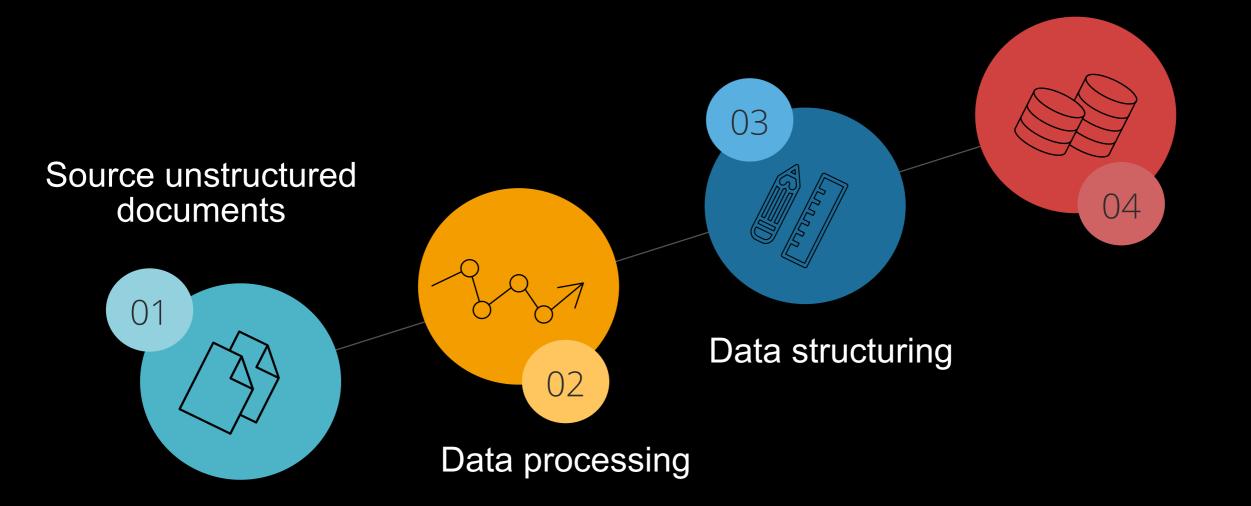
	RWP015	RWP050	RWP100	RWP500
Momentum	0.015 Nms	0.050 Nms	0.10 Nms	0.50 Nms
Max Torque *	0.004 Nm	0.007 Nm	0.007 Nm	0.025 Nm
Mass	0.130 kg	0.24 kg	0.35 Kg	0.75 kg
Volume	42 x 42 x 19 mm	58 x 58 x 25 mm	70 x 70 x 25 mm	11 x 11 x 3.8 cm
Voltage	12 VDC	12 VDC	12 VDC	28 VDC
Power @ 1/2 Momentum	< 0.6 W	< 0.5 W	< 0.5 W	< 3.0 W
Power @ Full Momentum	< 1.0 W	< 1.0 W	< 1.0 W	< 6.0 W
Design Life	> 5 years	> 5 years	> 5 years	> 10 years
Static Unbalance * (Fine)	< 1.2 g-mm (0.25 g-mm)	< 1.2 g-mm (0.35 g-mm)	< 1.5 g-mm (0.5 g-mm)	< 3 g-mm (1 g-mm)
Dynamic Unbalance * (Fine)	< 20 g-mm ² (2.5 g-mm ²)	< 20 g-mm ² (2.5 g-mm ²)	< 20 g-mm ² (5 g-mm ²)	< 25 g-mm2 (10 g-mm2)


	RW1	RW4	RW8
Momentum	1.0 Nm	4.0 Nms	8.0 Nms
Max Torque *	0.1 Nm	0.3 Nm	0.3 Nm
Mass	0.75 kg	3.0 kg	4.1 kg
Volume	11 x 11 x 3.8 cm	17 x 17 x 7 cm	19 x 19 x 9 cm
Voltage	28 VDC	28 VDC	28 VDC
Power @ 1/2 Momentum	< 4.5 W	< 5 W	< 5 W
Power @ Full Momentum	< 9 W	< 10 W	< 10 W
Design Life	> 10 years	> 10 years	> 10 years
Static Unbalance * (Fine)	< 3 g-mm (1 g-mm)	< 6 g-mm (2 g-mm)	< 8 g-mm (2.8 g-mm)
Dynamic Unbalance * (Fine)	< 25 g-mm ² (10 g-mm ²)	< 150 g-mm ³ (75 g-mm ³)	< 200 g-mm² (100 g-mm²)

Custom antions are available

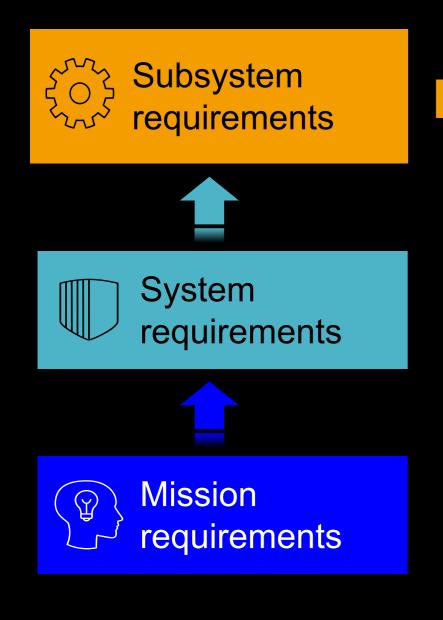
```
"attributeClassUuid": "1f8bf2f8-ff20-4f47-ab19-2732a83be1de",
"description": "",
"maximumValue": "",
"measurementUnit": "N m s",
"minimumValue": "",
"name": "angular-momentum-storage",
"productConfiguration": "base",
"productUuid": "b79236dc-407a-59bb-9215-8bda084cc317",
  id": "3e8755c0-c8f8-4293-912f-51026089bee3",
     ": "0.015"
"attributeClassUuid": "a992c4ca-7889-464f-a3b5-f5bba4d7a26e",
"description": "Annotated in datasheet: 'Custom options are available'.",
"maximumValue": "",
"measurementUnit": "N m",
"minimumValue": "",
"name": "maximum-torque",
"productConfiguration": "base",
"productUuid": "b79236dc-407a-59bb-9215-8bda084cc317",
"uuid": "dfba18ef-e9c0-43bd-abe4-c45ada956ede",
"value": "0.004"
```


The technology stack behind satsearch



Toolchain for creation & use of Electronic Data Sheets

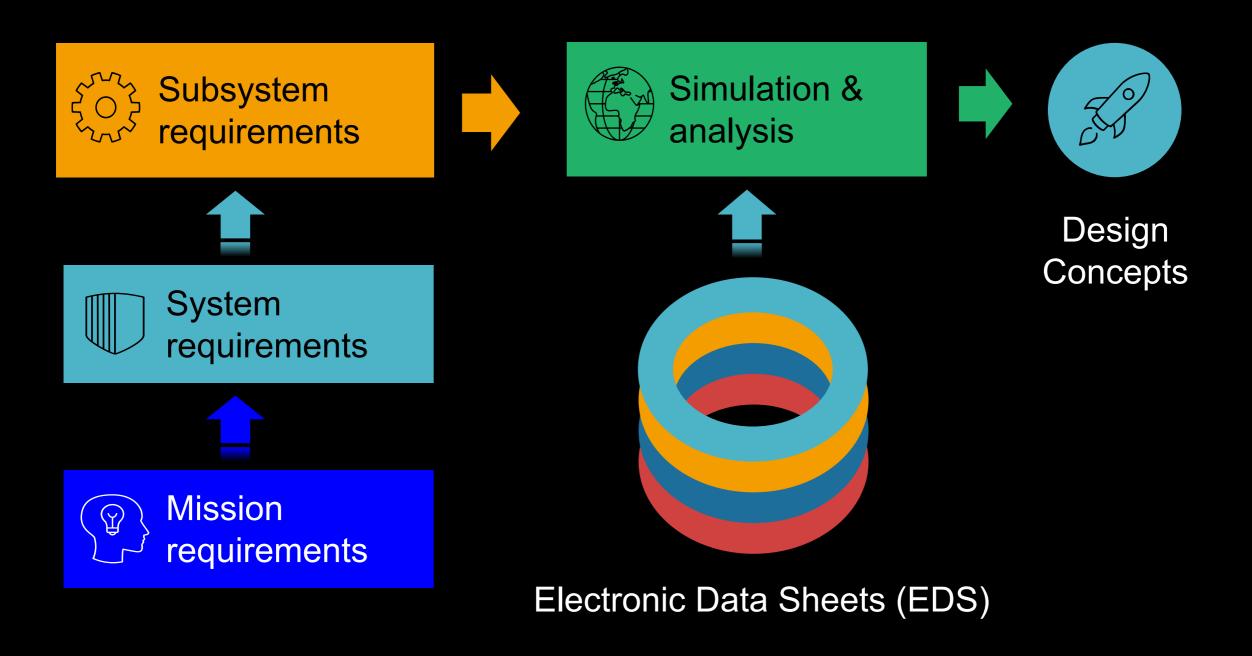
The conversion pipeline to EDS


Data storage & tooling

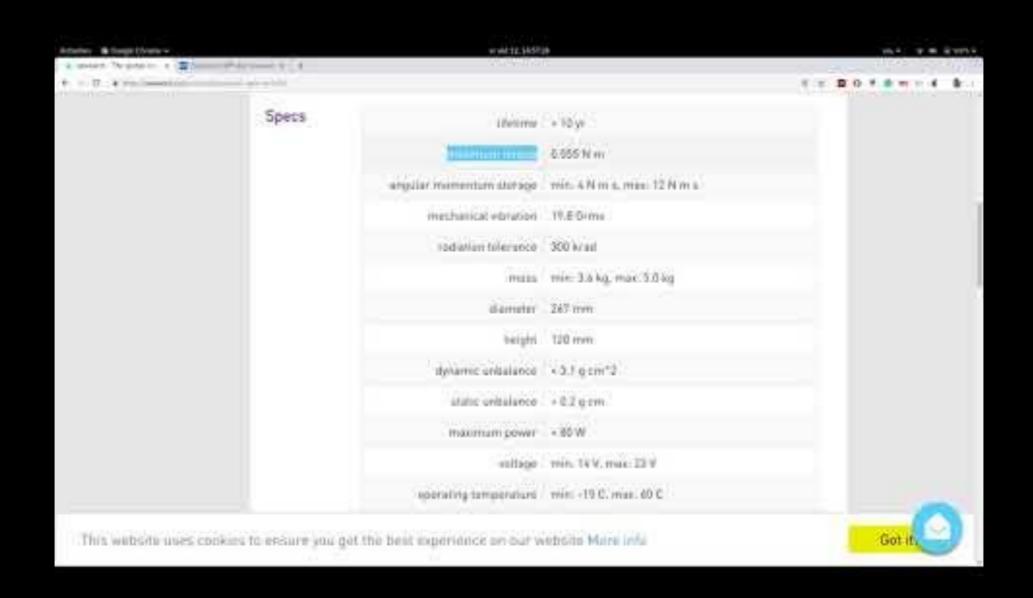
Growing need to develop "best of class" standards for EDS

Integrating supply chain data into design

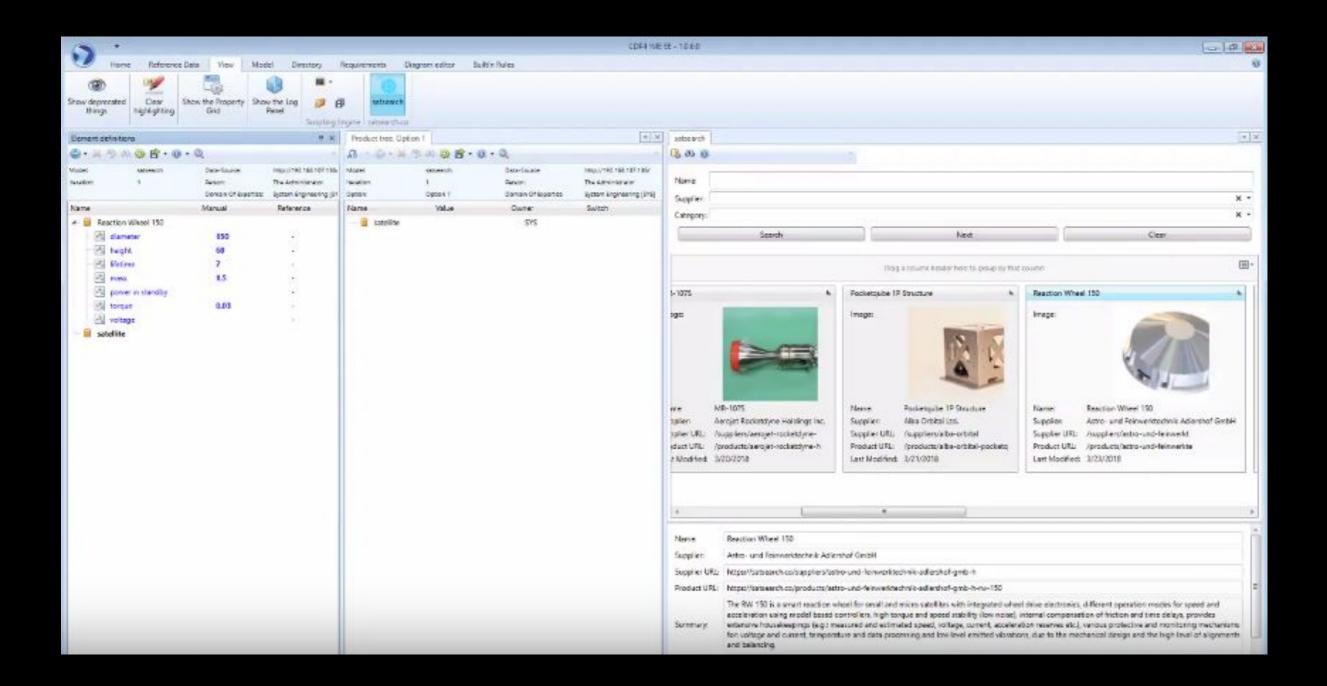




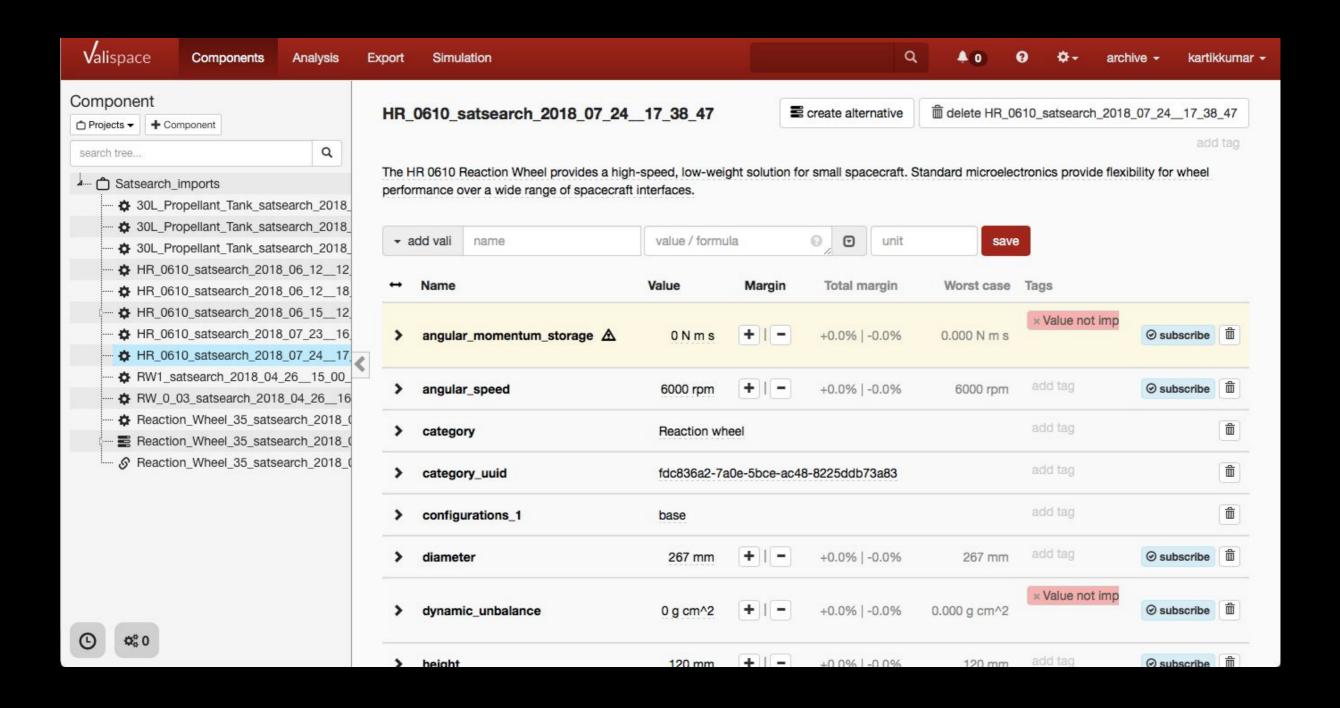
Design Concepts


Integrating supply chain data into design

Integrated Mission Design is essential to adoption of MBSE



Example: Concept generation for ACS



Example: CDP4TM integration

Example: Valispace integration

Example: ACORN integration

Data-driven design methods are the future

We are supporting a ESA NPI led by University of Strathclyde to develop a Design Engineering Assistant (DEA)

The global marketplace for space

ADCSS2018 ESA/ESTEC Noordwijk, the Netherlands Kartik Kumar, Co-founder & CEO kartik@satsearch.co +31 6 14634697