

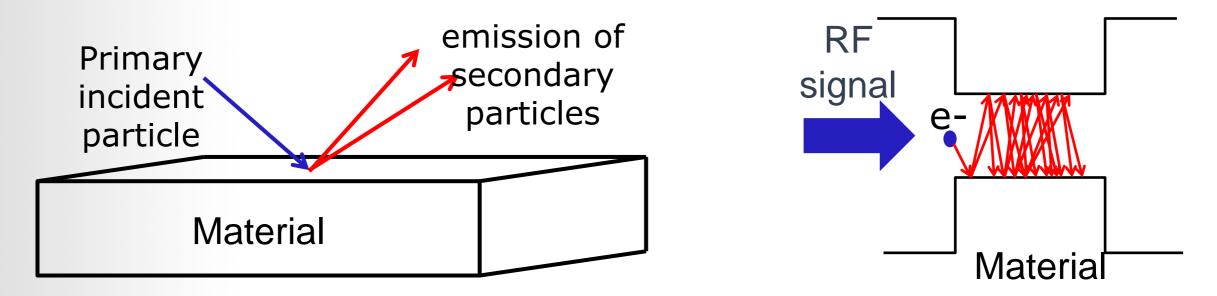
Mama: Material data-base for secondary emission tools

SPINE meeting

Arnaud Trouche⁽¹⁾, Benjamin Jeanty-Ruard⁽¹⁾, Jérôme Puech⁽²⁾, Julien Forest⁽³⁾ ⁽¹⁾ Artenum Toulouse ⁽²⁾ CNES/Toulouse ⁽³⁾ Artenum Paris/Lyon

ruard@artenum.com

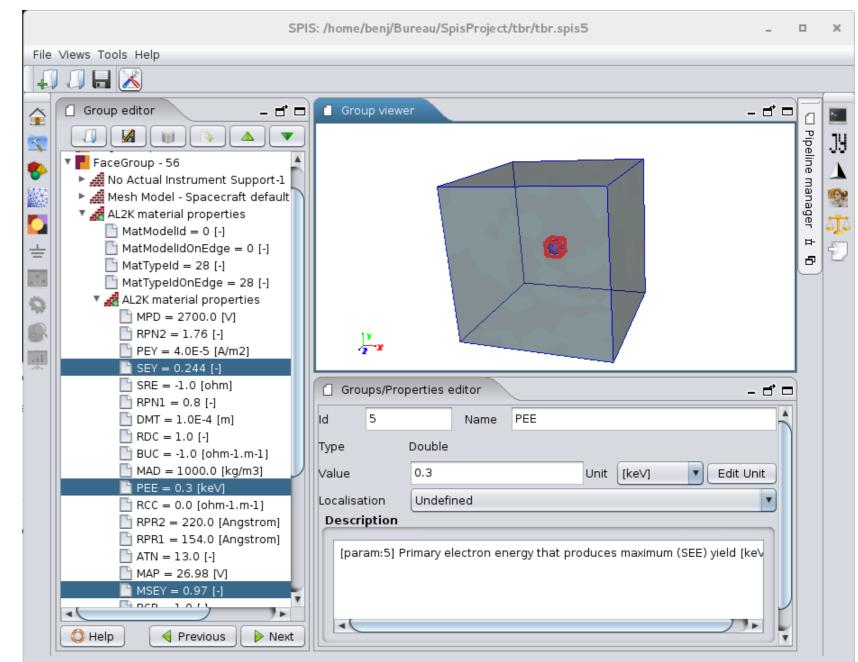
Meeting – October 2018


1

Secondary emission appears when primary incident particles hit a surface and induce the emission of secondary ones

Impact various domains of physics and engineering

- Spacecraft charging
- Multipactor
- ...


A proper and precise characterisation of material properties is needed

Important during the modelling process of the effect of the space environment for different communities

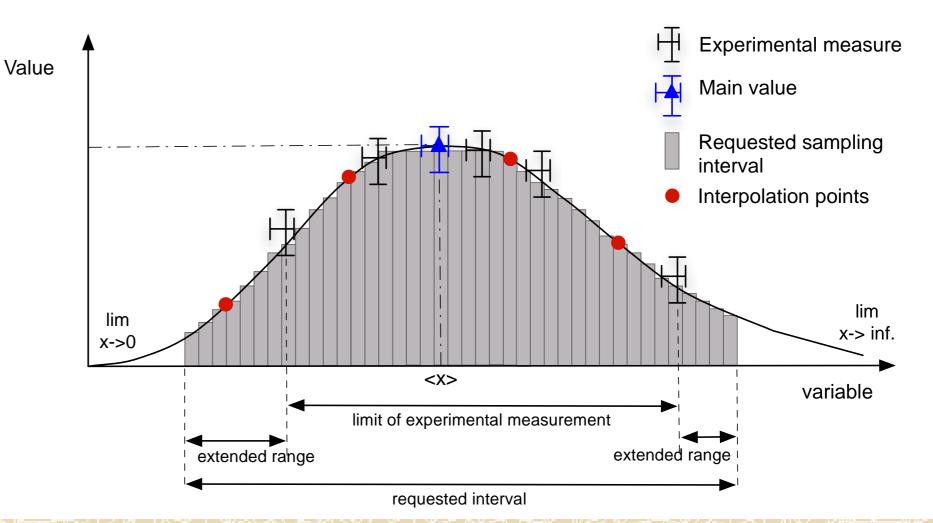
modelling of the spacecraft charging:

for example SPIS
 SEY characteristic
 PEE characteristic
 MSEY characteristic
 IPE characteristic

Multipactor

Important during the modelling process of the effect of the space environment for different communities

- modelling of the multipactor effect:
- for example Iris SEY where the secondary emission yield characteristics is needed to run a simulation


signal e-	RF signal	e-	
--------------	--------------	----	--

la Maria Tala Hala	IFIS SET: /	iome/benj/Burea	eau/irisProject/tbr/DefaultProject.iris _ 🛛			
ile Views Tools Help						
Global parameters						
Default parameters: defaultParameters-1.0.0.xml			rial characteristics			
Signal characteristics			SEY material characteristics Edit			
Frequency [GHz]	21.0; E	Edit				
Dimension characteristics			SEY material characteristics			
Width a [cm]	0.12; E	Edit 2E0				
$ \underbrace{ \begin{array}{c} \downarrow^{n} \\ \hline \\ \hline \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ $	0.108; E	Edit 1.75E0				
Simulation characteristics		1.5E0	3			
Applied RF Voltage [V]	2000.0;: E	dit 1.25E0				
Number of trajectories	100.0; E	Edit				
Energy of emitted electrons	[eV] 5.0; E	Edit 1E0				
Limitation time in half of RF periods	40	7.5E-1				
Lower boundary of initial pha	ises 0.0	5E-1				
Upper boundary of initial Pha	6.28318530	717 2.5E-1				
		OEO O	0E0 2.5E2 5E2 7.5E2 1E3 1.3E3 1.5E3 1.8E3 2E3			
	— Secondary emission yield VS electron energy (eV)					
C Help			A Previous Finalize run configuration and save project			

Material properties and characterisation present a intrinsic polymorphism

- Can be driven from experimental campaigns
- Can result from analytical models
- May present various levels of details (resolution, dependencies)
- But depends on the targeted consumer software as well

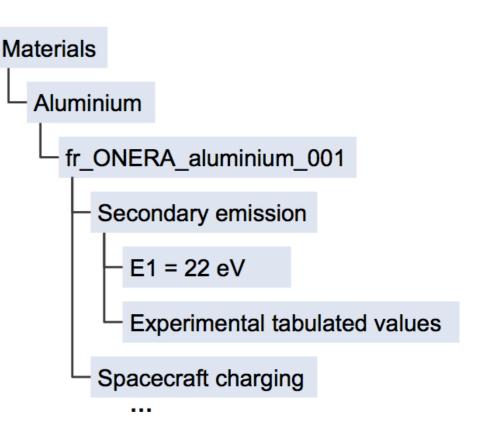
Reinforced constraints if we take into account:

- Various physics and/or integrated modelling approach
- E.g. Radiations/internal charging analysis
 - EDGE/MoOra/Gras/SPIS-IC chain
 - CIRSOS
- The evolution of knowledge and models (e.g. NASCAP/SPIS)
- Use by non-experts (i.e. identification of relevant data)
- Data are produced by various producers
- Various levels of details
- Different formalisms (i.e. different underlying models)
- Different formats (e.g. Matrex format, VO Table, XML, ASCII raw data, « the scan of my paper notes »
- Different levels of confidentiality
- Encryption
- Obfuscation, levels of details
- Need to identify and trust data
- Id and signature
- Traceability

Most of existing material data-bases are relational DB

- Induce de facto a formalism (i.e. the tables)
- Polymorphism difficult to handle
- Interfacing with another DB not straightforward
- Evolutions of the structure of stored data might be complex and costly (i.e. refactoring of tables)

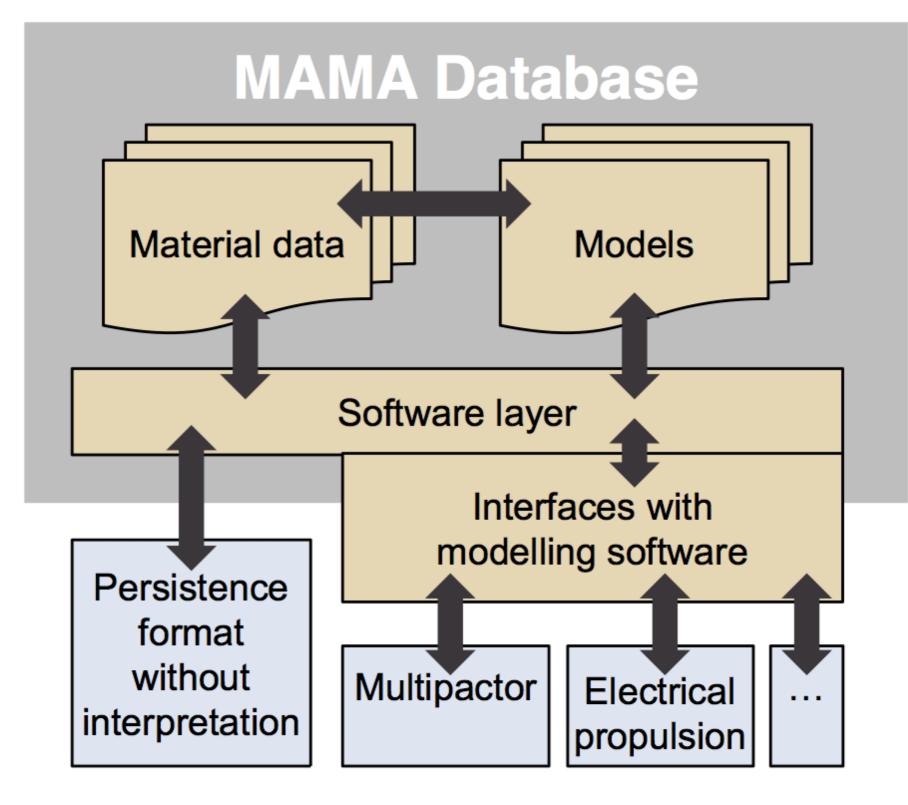
Name	Family	Secondary emission	Surface charging	
fr_ONERA _aluminum _001	Aluminium	22	310,6	


RTENUM, PARIS Science & Groupware

One alternative: object oriented DB

- Not so new concept (late 90s)
- Polymorphism directly handled by inheritance and composition
- If a tree based structure, the cardinality of data can be changed easily
- Interfacing with other DBs quite easy
- Evolutions of structures of stored data might directly handled by inheritance
- Concept near to pivot formats like
 STEP

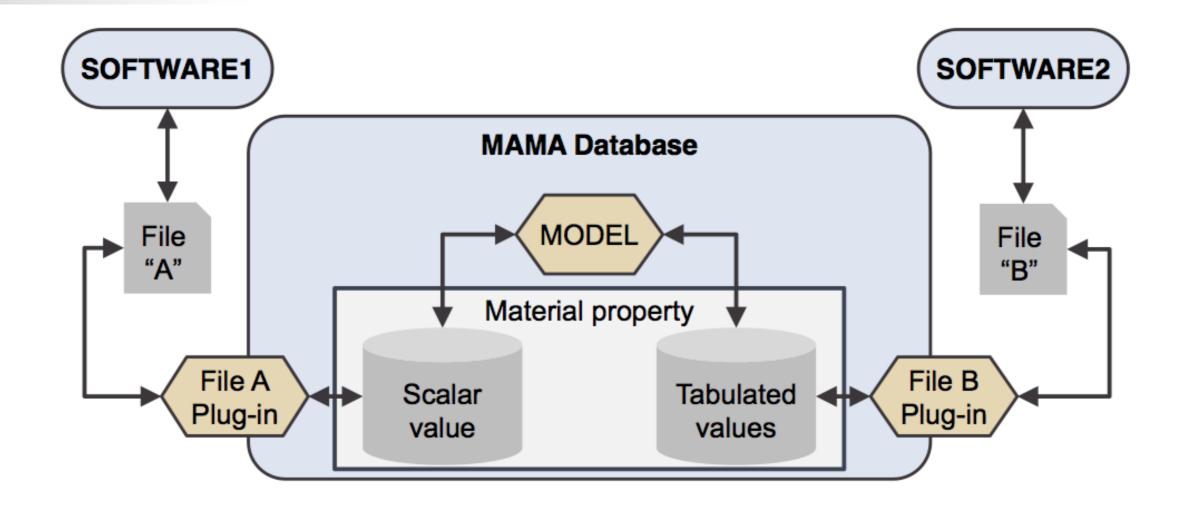
 Easier to build up inter-operability bridges between models, software representations



Structured effort through of several coordinated actions

- Properties and Groups Editor of SPIS, based on Frida library
- Review of interoparability needs through
- Two CNES SPIS/Matrex interoperabilities studies (cf. Denis Payan)
- Requirements and constraints identified in frame of ESA/Interop projet (STEP-SPE)
- First implementation initiated through two CNES / Multipactor related actions (cf. Jérôme Puech)
- First implementation of a multi-physic/multi-model object oriented DB
- Charging/mulitpactor bridge as demonstrator (SEY)
- Explore the handling of polymorphism of material data
- Integration of models inside the DB to
- Allow data formalism conversion and "understanding"
- Import/export capabilities (format conversion)
- Allow evolution of data structure

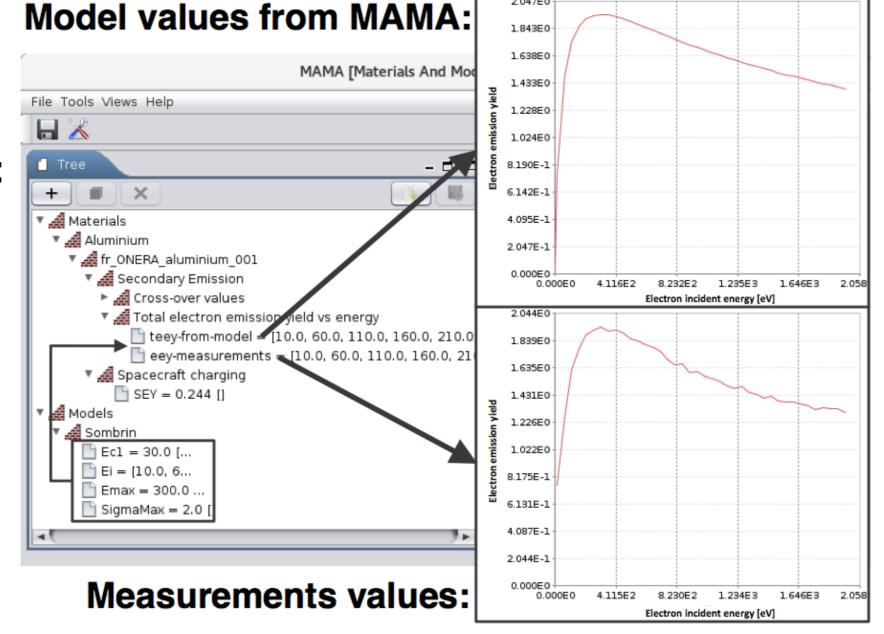
The MAMA project



Models:

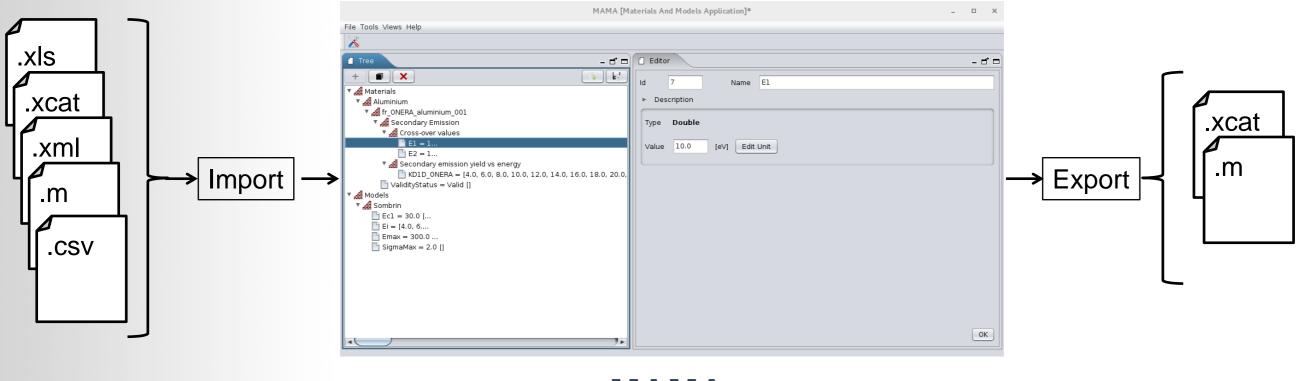
- Defined by input characteristics set manually
- Launch the model to compute the characteristics
- Export the result in a dedicated file loadable by MAMA
- Plugins: if the java file is present in the application, the associated model is available, if not it is not available

MAMA [Mat	erials And Models Application]* – – – ×
File Tools Views Help	
X	
Tree – 🗗	🗖 🗋 Editor 🛛 🗕 🗗 🗖
	Id 3 Name Ecl
 Materials Aluminium 	 Description
 fr_ONERA_aluminium_001 Accordary Emission 	Type Double
Cross-over values E1 = 1	Value 30.0 [eV] Edit Unit
E2 = 1	
Secondary emission yield vs ene KD1D_ONERA = [4.0, 6.0, 8.0,	
🗋 ValidityStatus = Valid []	
Models	
Sombrin Ec1 = 30.0 [
Ei = [4.0, 6	
Emax = 300.0	
🕒 SigmaMax = 2.0 []	
	ОК
۹ ()	



SEY example

- RAW data and measurement
- Sombrin model
- Possibility to produce:
- Re-built distribution function
- Export "key parameters" of the models
- Reduced values (e.g. mean value)



2.047E0

Data base prototype

Import and Export material characteristics and properties

MAMA

A first prototype of multi-physics / multi-model material data base, MAMA, has been presented

- Attempt to address the issues related to the polymorphism of materials characteristics
- Integration of models to process, "understand" and convert data
- First example of interopability bridge for SEY between multipactor (CNES/IRIS-SEY) and charging (SPIS)
- Informal synergy with other DB projects in social sciences presenting similar constraints (polymorphism, multicardinalities, traceability, obfuscation...)

Questions?

trouche@artenum.com

16