

Inputs on SPIS in relation to electron measurements on Solar Orbiter

Ali Varsani

Oct 2018

attroprysique & planteologie

⁴UCL

25th SPINE Workshop

ESTEC

UNIVERSITY of New Hampshire

Baseline Mission Profile

- Launch: Feb 2020, Vehicle: NASA's Atlas V
- Total mission duration, incl. extended phase: >10 yrs
- Cruise phase (~3.5 years):

solar orbiter

- Chemical Propulsion;
- Multiple gravity assist manoeuvres (Venus, Earth);

- Science phase:
 - Three-axis stabilised, Sun pointing;
 - Raising of orbit inclination angle;

Image courtesy: EAS, NASA

Info: Airbus, ESA SWA team

- Overall mass: ~1750 kg;
- Maximum power demand: ~1100W

Instruments and Measurements

Info: Airbus, ESA, NASA

	Investigation	Measurements	
In Situ Group	Solar Wind Analyzer (SWA)	Solar wind ion and electron bulk properties, ion composition (1eV- 5 keV electrons; 0.2 - 100 keV/q ions)	
	Energetic Particle Detector (EPD)	Composition, timing, and distribution functions of suprathermal and energetic particles (8 keV/n – 200 MeV/n ions; 20-700 keV electrons)	
	Magnetometer (MAG)	DC vector magnetic fields (0 – 64 Hz)	
	Radio & Plasma Waves (RPW)	AC electric and magnetic fields (~DC – 20 MHz)	
Remote Sensing Group	Polarimetric and Helioseismic Imager (PHI)	Vector magnetic field and line-of-sight velocity in the photosphere	
	EUV Imager (EUI)	Full-disk EUV and high-resolution EUV and Lyman- α imaging of the solar atmosphere	
	Spectral Imaging of the Coronal Environment (SPICE)	EUV spectroscopy of the solar disk and corona	
	X-ray Spectrometer Telescope (STIX)	Solar thermal and non-thermal X-ray emission (4 – 150 keV)	
	Coronagraph (METIS/COR)	Visible, UV and EUV imaging of the solar corona	
	Heliospheric Imager (SolOHI)	White-light imaging of the extended corona	

SWA Hardware Elements

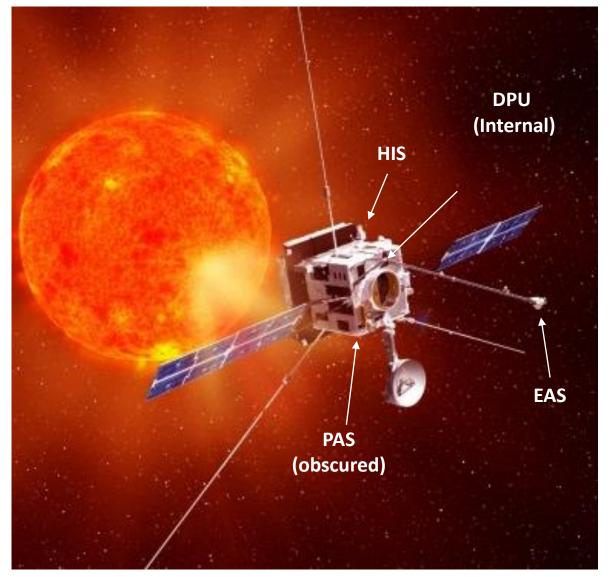
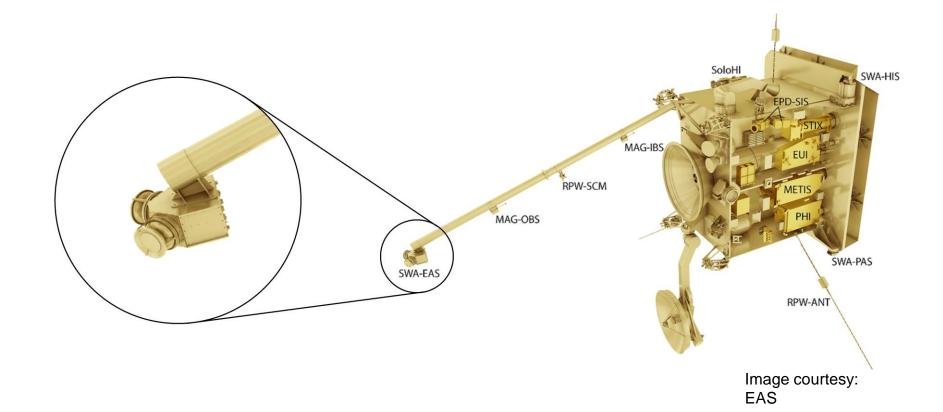


Image courtesy: EAS, NASA

Info: Airbus, ESA SWA team

SWA Hardware Elements

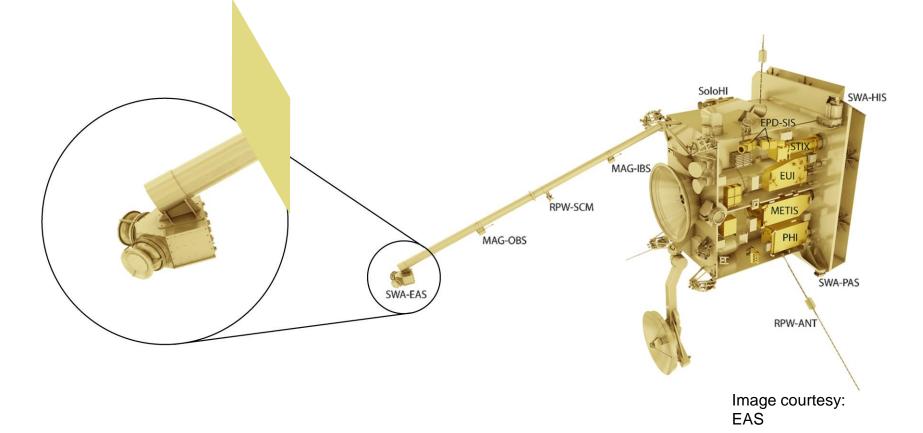

Image courtesy: EAS, NASA Info: Airbus, ESA, SWA team

Subsystem	Electron Analyser system (EAS)	Heavy Ion sensor (HIS)	Proton and Alpha sensor (PAS)	Data Processing Unit (DPU)
DPU HIS (Internal) PAS (obscured)				
Species	Electrons	Heavy lons	Protons and Alpha Particles	-
Measurement	High temporal resolution determination of the core, halo and strahl electron velocity distributions (1 eV < E < 5 keV) and their moments	Major charge states of C, O and Fe; 3-D velocity distributions of prominent heavy solar wind ions, suprathermal ions, and pick-up ions of various origins, such as weakly-ionized species (He ⁺ , O ⁺)	The velocity distribution of protons and alpha particles (0.2 < E < 20 keV/q) at high time resolution equivalent to the ambient proton cyclotron period.	Provide SWA suite control, commanding and data handling functions.

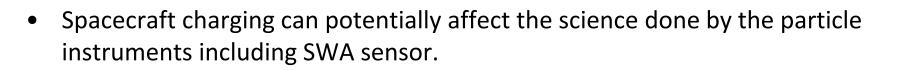
The SWA Electron Analyser System (EAS)

solar orbiter

- 3D Electrons measurement , 0 5 keV, using electrostatic analyser
- Combined FoV is full sky (although there is blockage by the spacecraft).



The SWA Electron Analyser System

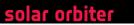

solar orbiter

- 3D Electrons measurement , 0 5 keV, using electrostatic analyser
- Combined FoV is full sky (although there is blockage by the spacecraft)


• Additional blockage due to the new baffle being added

- EAS original requirements :
 - no part of S/C should be charged +1 V different to the other part
 - no strong charging overall (> ~10V)
 - no strong B field, which affects the electron distributions

Spacecraft potential simulations by Stanislas Guillemant and Vincent Genot, IRAP


Electrostatic perturbations due to all non-grounded surfaces on Solar Orbiter

Grégoire Déprez, Fabrice Cipriani and Axel Junge

July 06th, 2018

Courtesy of Solar Orbiter project / ESTEC Presented by Déprez et al., July 2018

â

Courtesy of Solar Orbiter project / ESTEC Presented by Déprez et al., July 2018

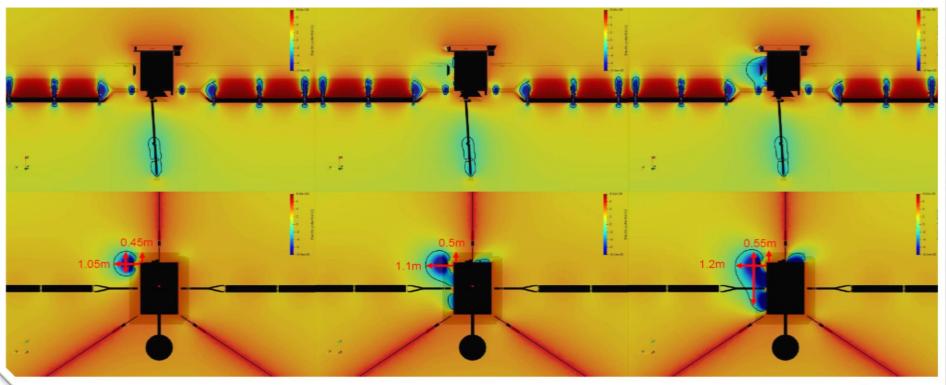
Recap of Non conductive / isolated surfaces and associated potentials

S/c Surface	Potential (V)
RPW antennas	6.5
PAS/HIS radiators and SoloHI PCBE	-100
Solar cells coverglass	8
Solar arrays internal gaps and edges	-100
Inner IBoom ice deposit	-5
Outer Iboom ice deposit	-3
MAGOBS Ice layer	-40
MAGIBS Ice layer	-13
EAS baffle ICE layer	-2
Yoke shadowed OSRs (80mm large)	-100
SPICE SORA OSRs + platform radiator OSRs	-5 / -20

Electrostatic perturbations due to all non-grounded surfaces on Solar Orbiter

Grégoire Déprez, Fabrice Cipriani and Axel Junge July 06th, 2018

Courtesy of Solar Orbiter project / ESTEC Presented by Déprez et al., July 2018


Electrostatic potential perturbation extension comparison

Case 1 (all OSRs at SC GND)

solar orbiter

Case 2 (all OSRs at -5V)

Case 3 (all OSRs at -20V)

Open questions:

- Propellants differ in types, and as a result the ice composition varies
 - Could SPIS include the composition of droplet and or their conductivity profile based on the temperature ?
- > Droplets can contaminate the S/C via scattered spots of ice, or as a solid layer.
 - Could SPIS include calculations based on the effect of each?
- The design of Solar Orbiter (including adding baffle) are all to make sure the measurements are least affected. However there will be S/C charging, and:
 - After the launch of Solar Orbiter, SPIS will be crucial for understanding how the charging affects our electron measurement.

End-to-end simulation:

- SPIS is a powerful tool, and indeed very valuable for the science to be done by Solar Orbiter.
- Analysis of various surfaces had been done. For the best science operations we would prefer to have the S/C model with all the surfaces included.
- Ideally, we would like to be able to do a simulation where:
 - The user could enter environmental conditions, e.g. distance to the sun
 - \circ $\,$ Add a source of electrons in infinity $\,$
 - Run SPIS and see how S/C charging affects the distribution of the electrons (for instance the trajectory , and velocity)
 - ✓ This way we could take the measured distribution, and extract the original distribution of the plasma .