

Environmentally friendly polyurethane (PU) materials for space applications

<u>Tomas Vlcek</u>, **TOSEDA s.r.o.** (Czech Republic) Ugis Cabulis, **Latvian State Institute of Wood Chemistry** (Latvia) Arturs Jasjukevic, **Ariane Group GmbH** (Germany) Malgorzata Holynska, **ESA-ESTEC** (The Netherlands)

General target

- Development of novel eco-friendly polyurethane materials avoiding use of toxic nonisocyanate based PU materials for versatile applicability in aerospace industry: a/ potting systems (spacecrafts manufacturing), b/ conformal coating (spacecrafts manufacturing), and
 - c/ thermal insulation foams (launchers manufacturing).

Requirements

- Elimination of toxic isocyanates used in traditional production of PU materials
- Minimization of health and ecological risks
- Sustainability aspect use of renewable resources

Development of "Green" Polyurethane Materials for Use in Spacecraft and Launcher Applications

ESA Contract No. 4000119685/17/NL/KML 2017 - 2019 Targeted TRL = 3-4

TOSEDA s.r.o. (CZ)

and testing of HNIPU materials

SME

- Prime-Contractor
- Design, formulation, preparation

ArianeGroup GmbH (DE)

- Large Systems Integrator (LSI)
- Sub-Contractor
- Definition of industrial requirements and evaluation of **HNIPU** materials

Latvian State Institute of Wood **Chemistry** (LV) Non-profit organization Sub-Contractor

 Semi scale of HNIPU foams by spraying and testing

Ústí nad Labem

České Budějovice

Karlovy Var

Studenec

Pardubice

Brno

Břeclav

PRAHA

TOSEDA s.r.o.

Who we are

- Status: SME
- 2012: R&D company focused on "Research, development and small scale production"
- Ownership: Tomáš Vlček (50%), Jiří Zelenka (40%) and Markéta Zelenková (10%)
- Number of employees: 12
- 2012 registered at ESA
- 2013 membership at Czech Space Alliance

What we are doing

- Custom design, development and commercialization of polymeric and nanocomposite materials for hi-tech applications.
- Cooperation with key EU partners from the space industry (Airbus, Thales Alenia Space, MT Aerospace...).

Orlová

Haviro

Ostrava

Frýdek Místek

LOSPH

GERMANY

ArianeGroup

- A world leader in access to space, serving institutional and commercial customers and supporting Europe's strategic independence
- 9000 employees, 11 subsidiaries & main affiliates
- 50/50 joint company between Airbus & Safran
- Main projects:
 - Ariane 5
 - Launch Services
 - Ariane 6
- <u>Development and industrial application of the External Thermal Insulation (ETI) for the</u> <u>application on the Ariane 6 launch vehicle</u>
- In the frame of the "Green" PU project:
 - Providing LSI inputs, as well as support in testing

Latvian State Institute of Wood Chemistry

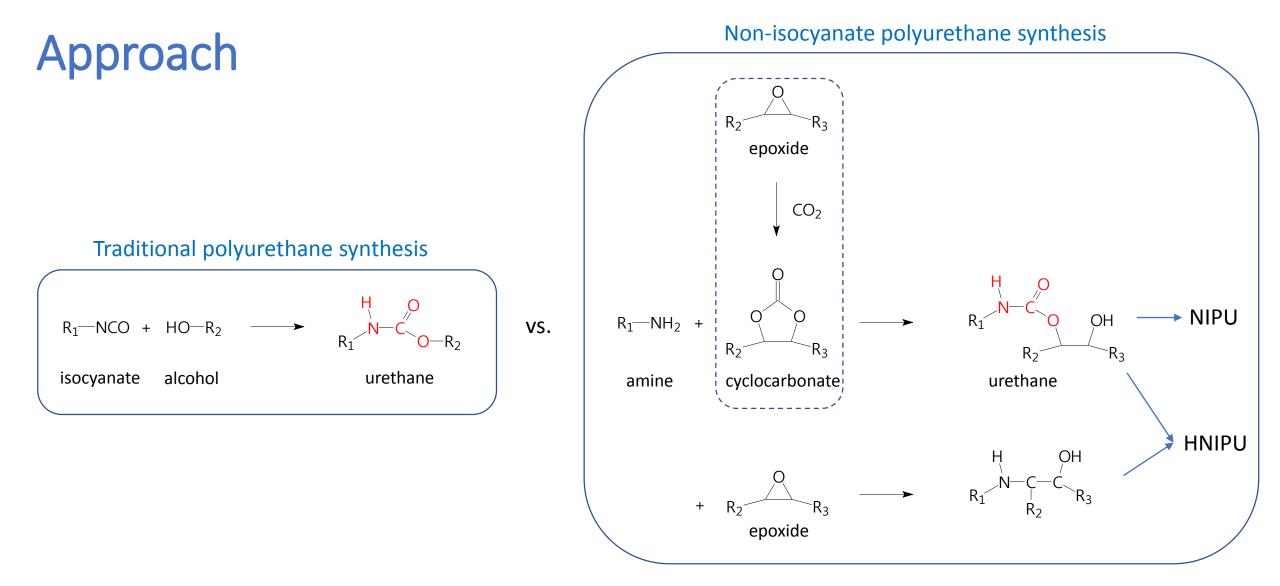
LS IWC mission is the development knowledgeof based, environment friendly lowwaste technologies for obtaining competitive materials and products from wood and other plant biomass for sustainable utilisation of natural resources economic. social for and ecological benefits.

► Founded in 1946

 \geq 118 employees;

>>38 Dr.

Cooperation with ArianeGroup (former Airbus DS; Airbus SL; ...) since 2004: development of ETI and IWTI



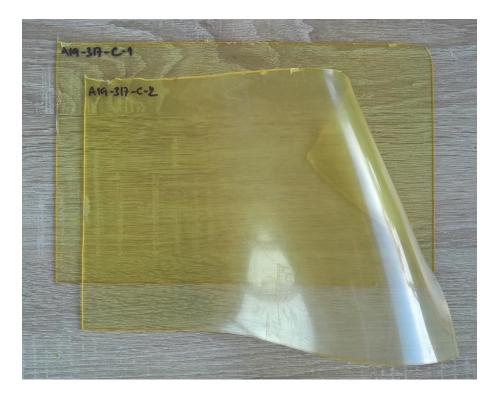
- Rigid Polyurethane Foams for External Tank Insulation for Launcher Upper Stages (CRYOFOAMS), 2015 - 2017
- Light Weight Polyurethane Insulation for the Bulkhead of Ariane Rocket, Produced with Next Generation Blowing Agents and Environmentally Friendly Catalysts (CRYOFOAMS-LW) 2018 - 2020

Development of Biobased Cryogenic Insulation Modified with Nanocrystalline cellulose REACH Stakeholders Day, ESTEC, 11/06/2019

Synthesis of cyclocarbonates

Photo of TOSEDA's laboratory pressure reactor set-up.

- Pressure: 40 bars (CO₂ inlet)
- Temperature: 110 °C (inside of the reactor)
- Mixing: mechanic stirrer
- Capacity: 500 mL
- Catalyst: Quaternary ammonium salt
- Co-catalyst: Catechol based hydrogen bond donor
- Reaction time: ca 10 72 h



NIPU potting system

HNIPU conformal coating

Renewables = 57,8 % Non-isocyanates urethane bonds = 100 %

Renewables = 51,3 % Non-isocyanates urethane bonds = 42,9 %

NIPU potting system

Parameter	Requirement	Results	Compliancy
Outgassing *	RML < 1.0%, CVCM < 0.1%	0.53 % RML	Y
Glass transition temperature **	≤ 50 °C	47 °C	Y
Surface hardness **	≥ 70 Shore D	84 Shore D	Y
Surface resistivity **	$\geq 6.1 \times 10^{10} \Omega$	1.7 x10 ¹³ Ω	Y
Volume resistivity **	$\geq 3.2 \times 10^{12} \Omega.m$	1.8 x10 ¹³ Ω.m	Y
Tensile strength at RT **	≥ 35 MPa	35 MPa	Y
Tensile strength at -60 °C **	≥ 70 MPa	26 MPa	Ν
Elongation at break at RT **	≥ 15 %	5.1 %	Ν
Elongation at break at -60 °C **	≥ 5 %	1.2 %	Ν
	No solvent content in targeted product	No solvent	Y
REACH and environmental requirements *	No use of isocyanates in the synthetic route	No isocyanate	Y
	Possibly use of renewable sources	57.6 %	Y
Materials procurement *	EU market availability / ITAR free	Yes	Y
Thermal conductivity (26 °C) **	≥ 0.164 W/m.K	0.290 W/m.K	Y
Urethane related mass	As high as possible	100.0 %	Y

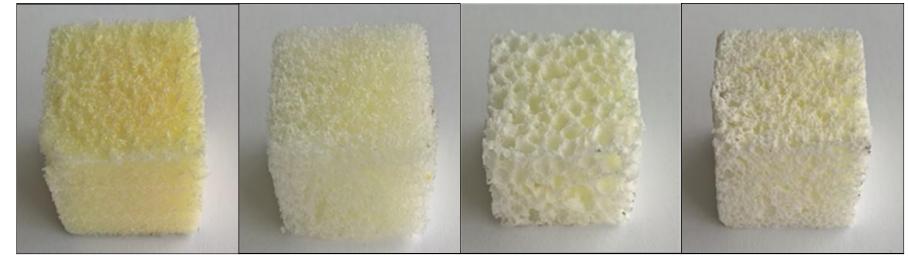
Note: * Benchmark target according to the SoW.

** Values derived from the reference polyurethane system based on reaction of Solithane S113 and TIPA (a product of Crompton, US)

HNIPU conformal coating system

Parameter	Requirement	Results	Compliancy
Outgassing *	RML < 1.0%, CVCM < 0.1%	0.81 % RML	Y
Glass transition temperature **	≤1°C	0 °C	Y
Surface hardness **	≥ 70 Shore A	75 Shore A	Y
Surface resistivity **	$\geq 1.5 \times 10^9 \Omega$	1.55 x 10 ¹¹ Ω	Y
Volume resistivity **	≥ 5.7 x 10 ¹¹ Ω.m	3.8 x 10 ⁸ Ω.m	Ν
Tensile strength at RT **	≥ 2.5 MPa	2,1 MPa	Ν
Tensile strength at -60 °C **	≥ 45 MPa	53.2 MPa	Y
Elongation at break at RT **	≥ 90 %	92 %	Y
Elongation at break at -60 °C **	≥ 20 %	3.3 %	Ν
	No solvent content in targeted product	No solvent	Y
REACH and environmental requirements *	No use of isocyanates in the synthetic route	No isocyanate	Y
	Possibly use of renewable sources	51.3 %	Y
Materials procurement *	EU market availability / ITAR free	Yes	Y
Thermal conductivity (26 °C) **	≥ 0.251 W/m.K	0.292 W/m.K	Y
Urethane related mass	As high as possible	42.9 %	Y

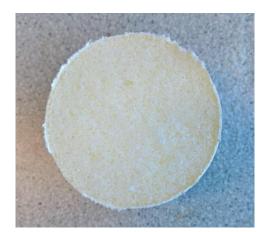
Note: * Benchmark target according to the SoW.


** Values derived from the reference polyurethane system based on reaction of Solithane S113 and Solithane C113-300 (a product of Crompton, US)

ESA Contract No. 4000119685/17/NL/KML "Development of "Green" Polyurethane Materials for Use in Spacecraft and Launcher Applications"

Laboratory testing

HNIPU rigid thermoinsulation foams


		PU CRS 127 reference	HNIPU F 1	HNIPU F 2	HNIPU F 3
Density [g/cm ³]	-	0.05	0.08	0.11	0.14
Compression strength at 10% deformation [MPa]	> 0.45*	0.16	0.09	0.35	0.48
Thermal conductivity [W/m.K]	< 0.035*	0.033	0.039	0.038	0.042

*Benchmark targets

HNIPU rigid thermoinsulation foams

Best candidate HNIPU foam

- Non-isocyanates urethane bonds = 37,6 %
- Renewables = 48,2 %
- Density 0.075 g/cm³
- CF free blowing agent
- Mixing ratio A/B = 1/1
- Applicable by spraying
- White color
- Fine cell structure
- No shrinkage
- A = 0.67 Pa.s (25 °C)
- B = 0.86 Pa.s (80 °C)

Laboratory preparation in paper cup

HNIPU rigid thermoinsulation foams

Parameter	Requirement	Results	Compliancy
Thermal conductivity	< 0.035 [W/m.K] at RT	0.039 W/m.K (26,1°C)	Y
Compressive strength load (externally applied insulation)	> 0.45 MPa (ETI); > 1.05 MPa (ITI)	0.09 MPa (RT) 0.37 MPa (-60°C)	N
Thermal efficiency [defined as 1 / density / thermal conductivity]	as high as possible (0.72 as target)	0.34	N
Closed cell content	as high as possible (90 % as target)	40.6 %	N
Chemical compatibility to GH_2 , GN_2 and He	Less than 20 % decrease of properties (compression strength load at 10 % deformation)	0.07 MPa (GH ₂) 0.10 MPa (GN ₂)	N V
		0.11 MPa (He)	Y
Low mass gain and no mech. failure induced by cryopump. effect	Less than 20 % decrease of properties	0.09 MPa	Y
	No solvent content in targeted product	No solvent	Y
REACH and environmental requirements	No use of isocyanates in the synthetic route	No isocyanate	Y
	Possibly use of renewable sources	48.2 %	Y
	No CFC foaming agents are to be used	Yes	Y
Materials procurement	EU market availability / ITAR free	Yes	Y
Urethane related mass	As high as possible	37.6 %	Y

Conclusions

- Hybrid non-isocyanates polyurethanes as new environmentally friendlier alternative to traditional PU materials
 - Up to 100 % replacement of toxic isocyanate hardeners
 - > Up to ca 60 % renewable raw materials

SYSTEM	Non-isocyanate urethane bonds [%]	Renewables content [%]
NIPU potting	100	58
HNIPU conformal coating	43	51
HNIPU foams	38	48

- The pre-developer HNIPU rigid foam has high potential to be implemented as external thermal insulation on existing and future Launch Vehicles by spraying without use of hazardous blowing agents
- The pre-developed (H)NIPU resins are suitable candidates for application in space vehicles electronics such as potting and conformal coating materials
- Next steps: to increase maturity to TRL 5