
A Novel Encoder for DC-Balanced
SpaceWire
Christopher M. Rose, Steve Cho, Matthew Gile, Kirk Volland,
Jarrett Wehle
Christopher M. Rose
Senior Professional Staff II
christopher.Rose@jhuapl.edu

mailto:christopher.Rose@jhuapl.edu

25 October 2020 2

DC-Balancing to enable AC-Coupled SpaceWire
• DC-balanced signal: count the # of 1’s and of 0’s in a signal — the difference between # of 1’s

and of 0’s is called the disparity
- must not ever exceed some ‘maximum disparity’

- SpaceWire's DATA and STROBE signals each need to be balanced individually
• AC-coupled: bulk of the signal does not determine the received data;

- Instead, it’s the change in the signal that is significant.

• DC-balanced signaling is an enabler for AC-coupling
• AC-Coupling can solve several design problems:

- Mismatched GND values across a SpaceWire link
- Plasma charging in spacecraft exterior and interior

- Large common mode offsets between GSE and FLT
- Remote components or instruments, i.e. on booms
- LVDS error propagation (Larsen 2010, “Theory and Operation of Fault Propagation…”)

25 October 2020 3

Motivation

• APL has large existing infrastructure of SpaceWire equipment and software:
- Link analyzers, data recorders, protocol checkers, ‘bricks’, WireShark, testbeds…

• APL also has a not-insignificant amount of experience with SpaceWire.
• How could we create an encoder that is DC-balanced and whose output still legible to the

existing infrastructure?
25 October 2020 4

• Block encoders are commonly used for DC-balancing – D/S encoding complicates this.
• Kissin and Rakow, 2016 offers several other approaches.
• In all of these, either the protocol is deliberately broken or the contents of encoded packets are

illegible — engineers can’t read the packets ‘on the line’.

SpaceWire at the signaling level
• SpaceWire = only DATA and STROBE signals, “Data-Strobe Encoding”
• No separate clock signal; clock is recovered by (DATA XOR STROBE) at the receiver
• Every transition of DATA or STROBE implies an active clock edge (DDR)
• NOTE that if no transition happens, no new data is decoded

25 October 2020 5

• Idea: use this feature to balance
SpaceWire signals

• Change the timing of DATA and
STROBE, not their values

• A NULL character is a sequence of eight bits of DATA and STROBE
• Disparities: it has an excess of 1’s in DATA, and too many 0’s in STROBE
• We will find a cycle with the opposite values, and extend it, ‘stretch it’, until the

disparities are zero.
• Now we have a DC-balanced NULL, ready for AC-coupling
• The receiving SpaceWire node just sees a NULL with some added delay
• No extra decode required(!)

25 October 2020 6

Simple Example: Cycle-Stretching a SpaceWire NULL

25 October 2020 7

One more step—Split Difference

1

1

-1

-1

+ Data
Disparity

• Think of each DATA,STROBE pair as creating a vector
on a plane that has data disparity as one axis, and
strobe disparity as the other axis.

• Each cycle of SpaceWire signaling moves the
cumulative disparities in both these dimensions

• We can’t make unit vectors by cycle stretching; we can
only make diagonal vectors.

• When we cycle-stretch, our goal is to move the
cumulative disparities back towards (0,0) on this plane.

- Data
Disparity

+ Strobe Disparity

-Strobe Disparity

(1,1)

(-1,-1) (1,-1)

(-1,1)

(DATA, STROBE) (Data Disparity,
Strobe Disparity)

(0,0) (-1,-1)

(0,1) (-1,1)

(1,0) (1,-1)

(1,1) (1,1)

25 October 2020 8

Cycle-Stretching with Split Difference Method (example)

The sum of the disparities of the
stretch cycles equals the 180
degree rotation of the original
character’s disparity.

The sum of the disparities of the
stretch cycles equals the 180
degree rotation of the original
character’s disparity.

25 October 2020 9

Cycle-Stretching with Split Difference (example, cont’d)

1

-1

-1
+ Data
Disparity

- Data
Disparity

+ Strobe Disparity

-Strobe Disparity

2

-5 -2-3-4 51 432

-3

-2

3

(4,2)

Cha
rac

ter
 Di

spa
rit

y

(-4,-2)

(-2,-2)
 (-1,-1)
+ (-1, 1)

(-4,-2)

Summing Disparities
Of Stretch Cycles:

• Some characters don’t have all combinations of
DATA and STROBE values available for stretching.

• Some differences in disparities are not equally
divisible by two.

• Some characters—particularly time codes—should
not be cycle-stretched at all.

• In all of these cases, we carry over any remaining
disparity into the next character.

• Some maximum # of stretch-cycles in series needs
to be enforced.

25 October 2020 10

Cycle-Stretching with the Split Difference Method—
Considerations:

• UVM test suite runs router
verification with thousands of
packets against cycle-stretching
router, with no errors

25 October 2020 11

Encoder demonstration
• We implemented a 10-Port IMAP router with

added cycle-stretching feature (ProASIC3E)
• Per-character cycle-stretch encoder requires

little additional hardware
• Configuration registers were added to

enable/disable individual links, and to adjust
several parameters

• Running automated board tests with no errors
(IMAP avionics, May 2021)

Total number of bits before encoding

25 October 2020 12

Efficiency
Total number of bits after encoding

• Efficiency of cycle-stretch methods are bounded by Manchester encoding, e.g. 1/2, or 0.50
• Efficiency of simple cycle-stretch encoder is dependent on the statistical qualities of the input

data. (Block encoders do not, Instead, they have a worst case baked in.)
• Packets with DATA that is all 0’s, or of all 1’s, are near-worst cases
• For some tests using randomized input data, we measured efficiency of ~0.66
• For comparison, block encoders have clearly defined efficiencies
• An 8b/10b block encoder has an efficiency of 8 = 0.80

10

12
• A 10b/12b block encoder has an efficiency of 10 = 0.83

• Those are pretty good!

Efficiency =

• We made a C model of a cycle-stretch encoder.
• We allowed the encoder to have access to the next N characters (‘look-ahead’) to be sent.
• Developed two ‘families’ of look-ahead, cycle-stretching encoders.

25 October 2020 13

How can we improve the efficiency of cycle-stretch encoders?

1.) a Naïve Lookahead Encoder:
- Take the difference between disparity D0 and DN

(This is the disparity of the current character, and the cumulative disparity calculated for N characters in the future)

- Divide that difference by N, and round down.
(Save the residue and pass it forward to the next character’s calculations)

- Zero out that disparity by cycle-stretching the current character.
- Do this for both DATA and STROBE disparities simultaneously using split difference method.

25 October 2020 14

Could we improve…? (cont’d)

2.) Rolling Average Lookahead Encoder:
- Sum the disparities for the first N characters to make rolling averages for DD and DS

- Add each new character’s disparities to these rolling averages
- Subtract the disparities for the outgoing Tx character from the rolling averages
- For each character, divide rolling averages by N
- Zero out these disparities by cycle-stretching the current (outgoing) character.

• More logic required to implement
- but assumed to be using existing TX FIFO

• Can’t always see N characters into the future
• Efficiencies definitely vary with respect to N (bigger N is better)

• Look-ahead encoders have higher efficiencies, BUT
• Running a check on the outputs, we found disparities accumulating over time
• Why? Averaging methods are 'leaky'

- There are always rounding errors
- There are initialization and termination issues to resolve
- These algorithms are not perfect

25 October 2020 15

Lookahead Encoders: Initial Findings

25 October 2020 16

Efficiency Improvement: A Second Stage

IDEA: The logic that is checking the disparities of the output stream could be feed a
‘second stage’: a per-character cycle-stretcher

• Stipulate a maximum disparity M, in DATA and in STROBE, that the second-stage
encoder will allow

• Second stage will only cycle-stretch as much as necessary to keep the resulting
encoded SpaceWire below the maximum disparity allowed.

• This works, it’s water-tight (no accumulating disparities over time) and it can be pretty
efficient, depending on the input data.

Measured with randomized input data, with no time gaps between packets --
flight data is closer to randomized packets than to a contrived worst case.

25 October 2020 17

Graphing Disparities over M and over N

In a practical system, we would use time gaps between packets to zero out any
disparities, using NULLs to create opportunities for cycle-stretching.

• Full implementation of lookahead encoders incorporated into existing IP.
• Explore range of component values to optimize max disparity and transmission rate.
• Testing against a full range of commercial SpaceWire equipment and a variety of traffic.
• Raise the TRL (technology readiness level) and identify a mission to fly it.
• Consider an encoder that builds its own statistical model of the traffic it sees.
• Ultimately, there is some best cycle-stretch solution for a given M and N; we don’t yet

know how to find it.

25 October 2020 18

Follow-on work:

Email: Christopher.Rose@jhuapl.edu

