

COUPLING TOOLS FOR SPACEWIRE ON-BOARD NETWORK: SIMULATION, CONFIGURATION AND VALIDATION

ISC2022: Paper number 71, B.Attanasio

Ref: x

TOOLS PRESENTATION

- /// MOST for Modelling of Spacecraft Traffic (not only SpW, but SpF, 1553, CAN)
- /// Goal of MOST:
 - To support SpW network design and optimization
 - To allow SpW networks performances analysis from the beginning, without waiting for system testing phase
 - To offer a progressive tool for SpW experts who would like to integrate specific SpW components, or to update existing library with regard to standard upgrades
- /// MOST simulator is dedicated to the following users:
 - System engineers who have to design network topology and to perform validation tests.
 - Developers who would need to test new component features or new protocol.

Does MOST behave like a real network?

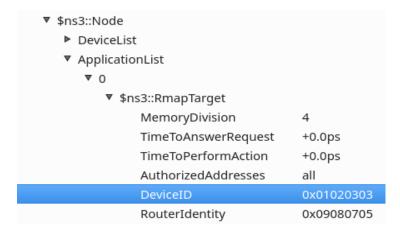
- /// SPACEMAN is a SpaceWire Network Management Tool used to discover and configure a network using some features of either the NDCP protocol or the RMAP protocol.
- /// It sends request over the Network and discover the nodes depending on the answers.

/// 2

RMAP REGISTERS IMPLEMENTATION IN MOST SIMULATOR

/// 3

RMAP NODE IMPLEMENTATION


RMAP logic implemented/modified specifically at node level:

/// The implemented registers are:

- The DeviceID register (0x105): Identity number
- The Router Identity register (0x101): Identity number
- The Network Discovery Register (0x100): Dynamic Status Information
- The general purpose register (0x106): Special Memory to Write and then Read

/// Real computer Memory reserved and managed at C++ level

Read and Write in the corresponding memories

RMAP NODE ATTRIBUTES

Configuration of a Device ID

\$ns3::Node DeviceList ApplicationList **~** 0 \$ns3::RmapTarget MemoryDivision TimeToAnswerRequest +0.0ps TimeToPerformAction +0.0ps AuthorizedAddresses 0x11110f0f DeviceID StartTime +0.0ps StopTime +0.0ps SystemId 0 \$ns3::EndPointInterruptManager \$ns3::RmapCommandReceiver EmmissionBuffer CheckBufferTotalSize 1000 HeaderDeleted false SpaceWireLogicalAddress 80 LocalKev 32

Real computer Memory reserved

A memory that contains registers has been implemented in the RMAP node.

An RMAP query can access any register in memory, ranging from address 0x0 to address 0x200 (512).

	0x000	0x001	0x002	0x003	0x004		Special Addresses
		0x100	0x101	0x102	0x103		Opecial Addresses
	0x110	0x111	0x112	0x113	0x114	0x115	Overall Register dedicated to
Write Command	0x116	0x117	0x118	0x119	0x11a	0x11b	RMAP
Read Answer	0x11c	0x11d	0x11e	0x11f	0x120	0x121	

New Registers

implemented

NETWORK DISCOVERY REGISTER FOR RMAP NODE: EXPLANATION

/// No configuration in the GUI: Automatically managed by the node

/// Structure of the Network Discovery Register for a node

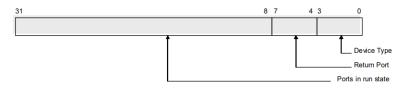


Figure 9-4 Network Discovery Register Fields

/// For a device the values are the following ones:

- Not a Router so considered as "Unknown Device": 0000
- Only 1 port so always the same return port
- Only one port and always active so run state is constant and equal to 1

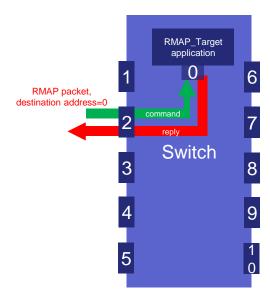
Bits 3:0:0000 (device Type)

Bits 7:4 : 0001 (return port = port 1)

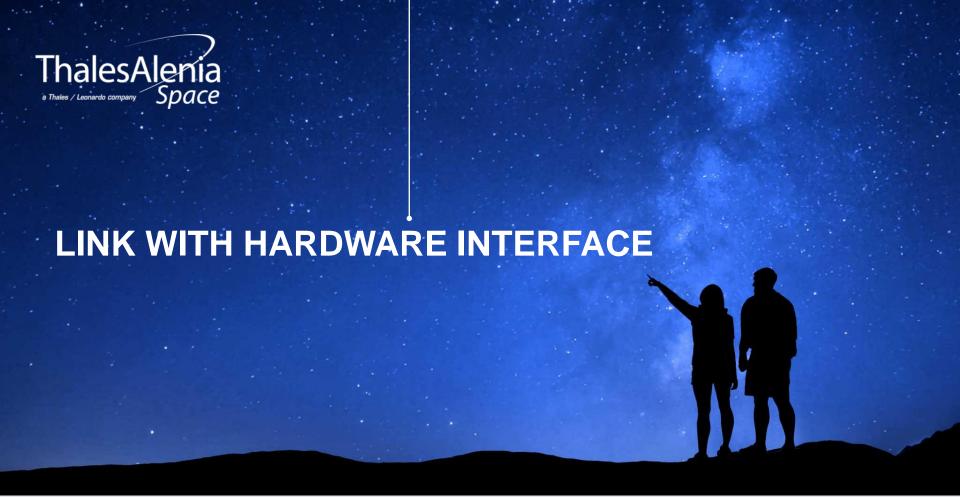
Bits 31:8: 0...000000001 (port 1 in Run State)

/// Also done for the router shown later in the validation part.

RMAP INTEGRATION IN 10X ROUTER


Modification of the Router Structure

Port 0 is a Logical Port and is fully internal to the switch


The RMAP application produces a reply which is subsequently sent back through the port where the initial RMAP command arrived through.

Packets sent to any port of the router with a target address 0 are routed to the RMAP application of the router (internally without any real HW port).

The Device ID register and the Router identity register are accessed exactly the same way as the Device ID register of the RMAP node.

Date: 17/10/2022

Ref: xxx

/// 8

IMPLEMENTATION HW/SW NODE IN MOST

Main Principle:

/// Add a new MOST Building Block

- Goal is to make the bridge between the simulation world and the Real HW World
- Use the STAR-System libraries to interface with the board

MOST-NS3
Spacewire Simulation Environment

HW/SW
Development

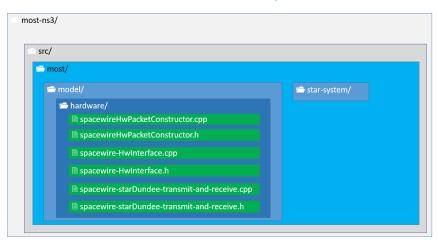
Spacewire Emulation

STAR-DUNDEE SpaceWire PCI Express board:

/// Connected to the development PC for MOST

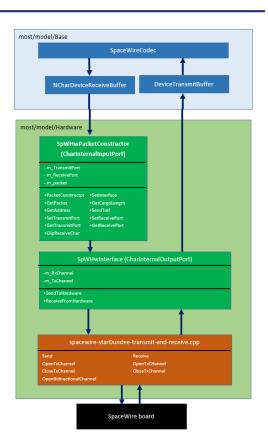
- Provides 3 SpaceWire interfaces
- And a PCI express connection

Ref: xxxx


/// 9

FILES ARCHITECTURE & NODE BUILDING

Code Architecture:


- /// New Folder in "model" representing a new MOST building block
- /// Star-System is a folder apart where the libraries for the board are implemented

Blue: Existing
Spacewire Basis
functions

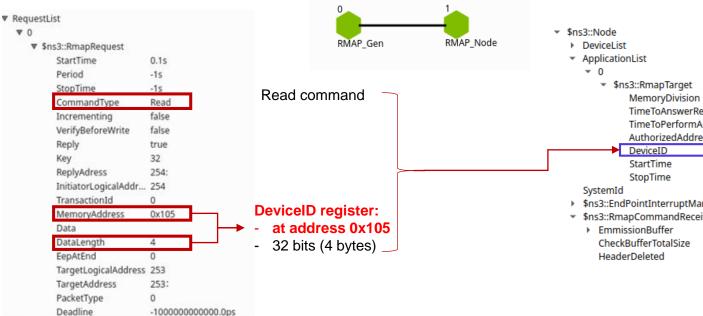
Green: functions developed for HW/SW Node

Orange: starsystem functions used (not all) →
Board dependant

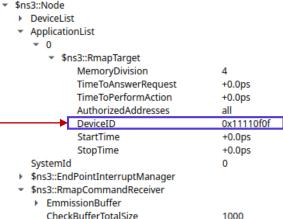
Date: 17/10/2022

Ref: xxxxx

/// 10



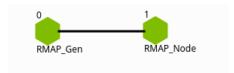
Ref: xxx



VALIDATION AT MOST LEVEL : NODE - 1/4

Traffic definition in MOSTGui at the emitter level: Request with the Target Memory and Data Length for an Rmap Node

Node Configuration in MOSTGui at the receiver level



false

VALIDATION AT MOST LEVEL : NODE - 2/4

Command sent by SPACEMAN

Uint8_t	RMAP Norm	
254	TLA	
1	PID	
77	Instruction	
32	Key	
0		
0	Reply address	
0	Reply address	
5		
253	InitLA	
0	MSID	
5	LSID	
0	Ex Ad	
0	Ad	
0	Ad	
1	Ad	
5	Ad	
0		
0	Data Length	
4		
142	CRC	

Degenerated test, not used with SPACEMAN because only one node and not a full network.

Command sent by the generator in MOST

```
SERIALIZING TargetLogicalAddress F 254
SERIALIZING ProtocolIdentifier F 1
SERIALIZING Instruction_F 77
SERIALIZING Key_F 32
SERIALIZING ReplyAdress_F 0
SERIALIZING ReplyAdress_F 0
SERIALIZING ReplyAdress F 0
SERIALIZING ReplyAdress F 5
SERIALIZING InitiatorLogicalAddress F 253
SERIALIZING TransactionIdentifier F 0
SERIALIZING TransactionIdentifier F 5
SERIALIZING ExtendedAddress F 0
SERIALIZING Address F 0
SERIALIZING Address F 0
SERIALIZING Address F 1
SERIALIZING Address F 5
SERIALIZING DataLength F 0
SERIALIZING DataLength F 0
SERIALIZING DataLength F 4
SERIALIZING HeaderCRC F 0
SERIALIZING Eop F
```

Reply sent by the target in MOST

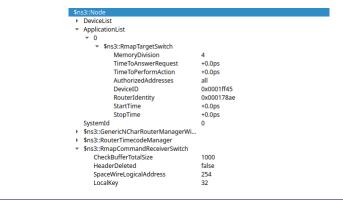
SERIALIZING	InitiatorLogicalAddress F 253
SERIALIZING	ProtocolIdentifier F 1
SERIALIZING	Instruction F 13
SERIALIZING	Status F 0
SERIALIZING	TargetLogicalAddress F 254
SERIALIZING	TransactionIdentifier F 0
SERIALIZING	TransactionIdentifier F 5
SERIALIZING	Reserved F 0
SERIALIZING	DataLength F 0
SERIALIZING	DataLength F 0
	DataLength F 4
SERIALIZING	HeaderCRC F 0
SERIALIZING	Data F 0
SERIALIZING	Data F 1 Device ID
SERIALIZING	Data F 17
SERIALIZING	Data F 52
SERIALIZING	DataCRC F 0
SERIALIZING	Eop F

Reply	received b	y SPACEMAN
1001	1000110410	, 0, , , 0 = , , , , , ,

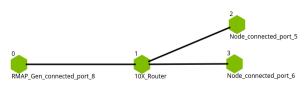
Uint8 t	RMAP Norm	
_		
253	InitLA	
1	PID	
13	Instruction	
0	Status	
254	TLA	
0	MSID	
5	LSID	
0	Reserved	
0		
0	Data Length	
4		
223	CRC	
0		
1	Data	
17	Data	
52		
139	DataCRC	
	EOP	

Date: 17/10/2022 Ref: xxxxx

/// 13


VALIDATION AT MOST LEVEL : ROUTER - 3/4

Network Discovery Register


Traffic definition in MOSTGui at the emitter level: Request with the Target Memory and DataLength

\$ns3::RmapRequest		
StartTime	0.1s	
Period	-1000000000000.0ps	
StopTime	-1000000000000.0ps	
CommandType	Read	
Incrementing	false	
VerifyBeforeWrite	false	
Reply	true	
Key	32	
ReplyAdress	0:0:0:5:	
InitiatorLogicalAddress	253	
TransactionId	0	
MemoryAddress	0x100	Network discovery
Data		register:
DataLength	4	- at address 0x100
EepAtEnd	0	 32 bits (4 bytes)
TargetLogicalAddress	254	Destination address
TargetAddress	0:	0 to reach the
PacketType	0	configuration port
Deadline	-1000000000000.0ps	

Node Configuration in MOSTGui at the 10X router

Topology: only ports 5, 6 and 8 will be in the RUN STATE

VALIDATION AT MOST LEVEL : ROUTER - 4/4

Network Discovery Register

Command sent by SPACEMAN

```
SERTAL TZING
SERIALIZING TargetLogicalAddress F 254
SERIALIZING ProtocolIdentifier F 1
SERIALIZING Instruction F 01001001
SERIALIZING Key F 32
SERIALIZING ReplyAdress F 0
SERIALIZING ReplyAdress F 0
SERIALIZING ReplyAdress F 0
SERIALIZING ReplyAdress F 5
SERIALIZING InitiatorLogicalAddress F 253
SERIALIZING TransactionIdentifier F 0
SERIALIZING TransactionIdentifier F 0
SERIALIZING ExtendedAddress F 0
SERIALIZING Address F 0
SERIALIZING Address F 0
SERIALIZING Address F 1
SERIALIZING Address F 0
SERIALIZING DataLength F 0
SERIALIZING DataLength F 0
SERIALIZING DataLength F 4
SERIALIZING HeaderCRC F 0
SERIALIZING EOD F
```

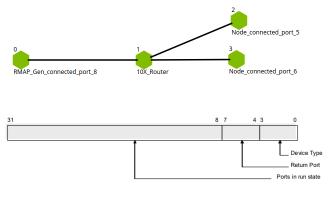


Figure 9-4 Network Discovery Register Fields

Bits 3:0:0001 (router)

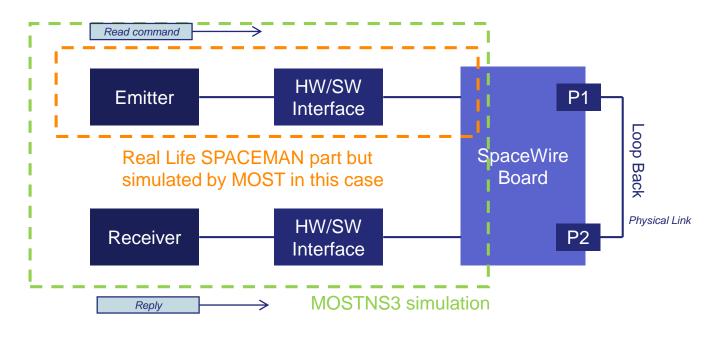
Bits 7:4: 1000 (return port = port 8)

Bits 31:8: 0...010110000 (port 5,6, and 8 in run state)

Automatic update of the return port at every **RMAP Request**

Reply received by SPACEMAN

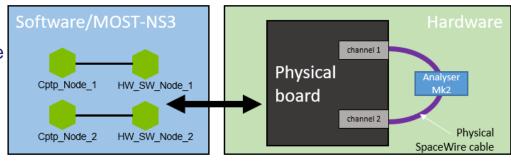
```
SERIALIZING InitiatorLogicalAddress F 254
SERIALIZING ProtocolIdentifier F 1
SERIALIZING Instruction F 00000000
SERIALIZING Status F 0
SERIALIZING TargetLogicalAddress F 253
SERIALIZING TransactionIdentifier F 0
SERIALIZING TransactionIdentifier F 0
SERIALIZING Reserved F 0
SERIALIZING DataLength F 0
SERIALIZING DataLength F 0
SERIALIZING DataLength F 4
SERIALIZING HeaderCRC F 0
SERIALIZING Data F 129 10000001
SERIALIZING Data F 176 10110000
SERIALIZING Data F 0 00000000
SERIALIZING Data F 0 00000000
SERIALIZING DataCRC F 0
SERIALIZING EOD F
```


RMAP C Rd 253 254 27 32 0x0000000100	4 20 22 00 00 00 05	01 00 fe 01 4d 20 00 00 00 05	fd 00 1b 00 00 00 01 00	00 00 04 bb EOP
RMAP R Rd 254 253 27 OK	4 17 17	fd 01 0d 00 fe 00 1b 00	00 00 04 3e 00 0f 01 10	47 EOP

Date: 17/10/2022

Ref: xxxxx Template: 83230347-DOC-TAS-EN-006

VALIDATION AT MOST LEVEL WITH SPACEMAN BEHAVIOR - 1/3


This simulation was done entirely on MOSTGui: RMAP_HW_SW_LOOPBACK

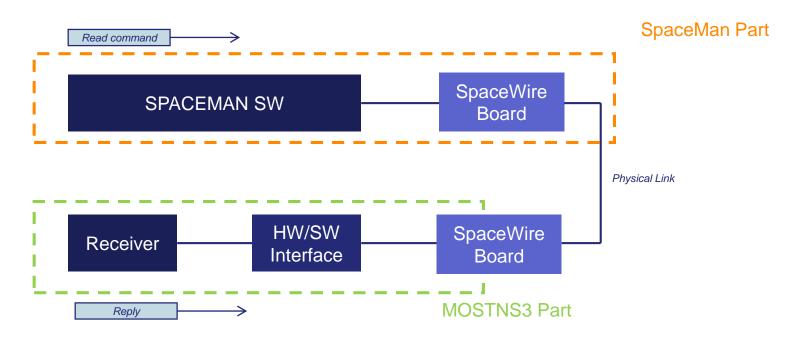
FINAL END-TO-END TESTS

Loopback Tests:

- Emitter part with CPTP Node + HW/SW Node
- Receiving part with CPTP Node + HW/SW Node

Sniffer:

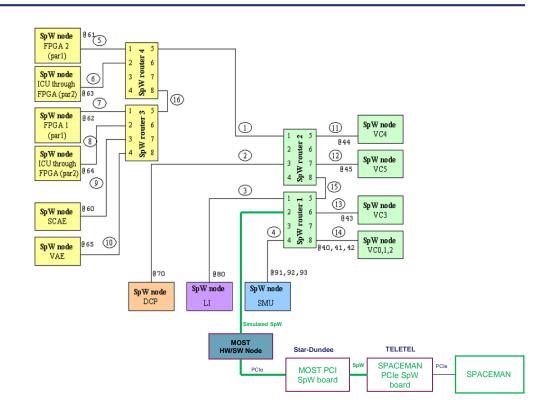
Check on the physical link that packets are well sent


Time From Trigger	Time Delta	End A	End A Delta
-598.73126 ms		Header: FE	
-598.73121 ms	50 ns	Cargo Size: 8 bytes	50 ns
-598.73084 ms	370 ns	EEP	370 ns
-405.81462 ms	192.91622 ms	Header: FE	192.91622 ms
-405.81457 ms	50 ns	Cargo Size: 5 bytes	50 ns
-405.81435 ms	220 ns	EOP	220 ns
-203.1386 ms	202.67575 ms	Header: FE	202.67575 ms
-203.13855 ms	50 ns	Cargo Size: 7 bytes	50 ns
-203.13823 ms	320 ns	EEP	320 ns
-970 ns	203.13726 ms	Header: FE	203.13726 ms
-920 ns	50 ns	Cargo Size: 19 bytes	50 ns
0 ns	920 ns	EOP	920 ns

Basic Validation with ATOM for compatibility:

- Simple Sending
- Simple Emitting
- Loop back tests

VALIDATION WITH SPACEMAN


SPACEMAN and MOST are working independently but sharing information through RMAP commands

EXAMPLE OF NETWORK DISCOVERY

Simulation Logic

- SPACEMAN SW
- Connected to SPACEMAN PCIe board
- Connected in SpW to MOST PCIe board
- Linked to HW/SW Node (MOST node)
- Linked to:
 - o either one Standard Node
 - o Or one RMAP Node
 - Or one Router supporting RMAP

Template: 83230347-DOC-TAS-EN-006

© 2022 Thales Alenia Space All rights reserved

Date: 17/10/2022 /// 20 Ref: 0005-0012634704

