

International SpaceWire and SpaceFibre Conference 2022

A hybrid and reconfigurable edge node computer using SpaceWire and SpaceFibre

19th October, 2022

Shinpei Kondo, Hiroki Hihara, Mitsuhisa Yamaji (NEC Space Technologies)

Fumio Hodoshima, Takeshi Inuo (Shimafuji Electric Incorporated)

Kuniyuki Omagari (NEC)

Takeshi Takashima (JAXA/ISAS)

© NEC Space Technologies, Ltd. 2022

Contents

- 1. Introduction
- 2. DESTINY+ MISSION
- 3. Model-based development
- 4. Space Cube mk4 for Model-based development
- 5. Space Cube mk4 architecture
 - SpW/SpFi router
 - Software development kit (SDK) for Model-based development
- 6. Conclusion

Introduction

Space Cube mk4 for reducing the development duration

- Destiny+ satellite system needs shorter development duration
- Model-based development process to meet the requirement of shorter duration

Characteristics of Space Cube mk4

- Space Cube mk4 has both of Field Programmable Gate Array (FPGA), and Dynamically Reconfigurable Processors (DRPs).
- SpW/SpFi interface for efficiently ground support equipment
- Dynamically Reconfigurable Processors (DRPs) for efficiently coding

DESTINY+ Mission

Mission objectives

- Developing spaceflight technologies using electric propulsion and expand the range of its utilization
- Expanding the opportunities for small body exploration by acquiring advanced asteroid flyby exploration technologies
- The chance for Phaethon flyby is only one time
 - \rightarrow The simulation on the ground requires higher accuracy, and model-based development with Space Cube mk4 can realize this requirement.

Milestones

Nominal launch window FY2024

DESTINY + specifications

480 kg spacecraft with an Ion Engine System

Model-based development

- The standard middleware is based on Space Monitor & Control Protocol (SMCP) designed by JAXA/ISAS.
- Thanks to this standard middleware, it is easy to assemble the model on the processors LEON5, DRP, and Xilinx Kintex UltraScale.

Space Cube mk4(1)

Three types of processing elements (PEs) are integrated on a Space Cube® mk4.

- Xilinx Kintex UltraScale FPGA with a micro-processor LEON5 IP
- RZ/V2M (Dynamically Reconfigurable Processor = DRP)

RZ/A2M (DRP)

The outlook of Space Cube® mk4 and its interior assembly

Space Cube mk4(2) - Details of three processing elements (PEs)-

■ Xilinx Kintex UltraScale FPGA -①

LEON5 IP for practical way to establish design framework as a software development kit (SDK) SpW/SpFi router developed by NEC

■ RZ/V2M -②

Heavy load processing as neural network functions for artificial intelligence applications can be implemented with sufficient low power consumption as an edge node processor.

■ RZ/A2M -③

RZ/A2M is used as a small-scale embedded controller with an Arm®-based micro-controller.

Space Cube mk4(3) –other characteristics of DRPs-

RZ/V2M

- Connected to FPGA through PCI Express interfaces
- Transmition at high speed to the onboard equipment from the SpaceWire and SpaceFibre interfaces

RZ/A2M

Several input/output (I/O) circuitries

Wire rate processing capability up to 10 MHz by programmable software

Space Cube mk4 architecture

Higher level signal processing and protocol handlings are performed by software.

- Software development kit (SDK) for Model-based development to make developers understand the reference model of complex level onboard processing (even the case of component like "all hardware logic")
- The reference model includes onboard computer architecture, communication model, and database scheme for satellite operations.

Transferring the software simulation results easily

By utilizing these DRPs, it is possible to transferring the software simulation results easily in short time, and the switchover from a simulation to the actual device evaluation becomes smooth.

Conclusion

Versatile simulator

Space Cube® mk4 accommodates three types of processing element, a conventional micro-processor, an FPGA, and a DRP.

Established based on SMCP

The method to exploit hybrid and reconfigurable computing technology has been established based on Spacecraft Monitor & Control Protocol (SMCP) designed by JAXA/ISAS.

Model-based development

The process is employed prior to system level integration test to follow the tight development schedule.

DRPs and a SpaceWire/SpaceFibre router are key components
Extensive simulation is performed by a hardware-in-the-loop simulator.

\Orchestrating a brighter world

NEC creates the social values of safety, security, fairness and efficiency to promote a more sustainable world where everyone has the chance to reach their full potential.

Orchestrating a brighter world

Dynamically Reconfigurable Processor (DRP)

- High-speed context switching capability.
- Several context planes in a chip
 - Context switching even in every clock cycle.
- ◆ Wire rate processing capability up to 10 MHz by programmable software

https://www.renesas.com/jp/en /application/keytechnology/artificialintelligence/voice-facerecognition/drp

Dynamically Reconfigurable Processor (DRP)

https://www.renesas.com/jp/en/application/key-technology/artificial-intelligence/voice-face-recognition/drp

Model-based development

- The standard middleware is based on Space Monitor & Control Protocol (SMCP).
- This protocol is performed by a conventional MPU. SMCP was developed by JAXA/ISAS [9, 10].
- The protocol aims at unified building method of commands, telemetry messages, and sequence for all satellites and onboard equipment.
- Telemetry and Command processing functions are realized through SMCP.
- Reliability and timeliness were taken into account by exploiting Remote Memory Access Protocol (RMAP) and Time-Code delivery function.
- Retry and Redundancy control are carried out using Cyclic Redundancy Check (CRC) in RMAP packet.
- Quality of Service (QoS) functions are provided by SpaceFiber protocol. Scheduling (Slot Control) are implied by Time-Code.

