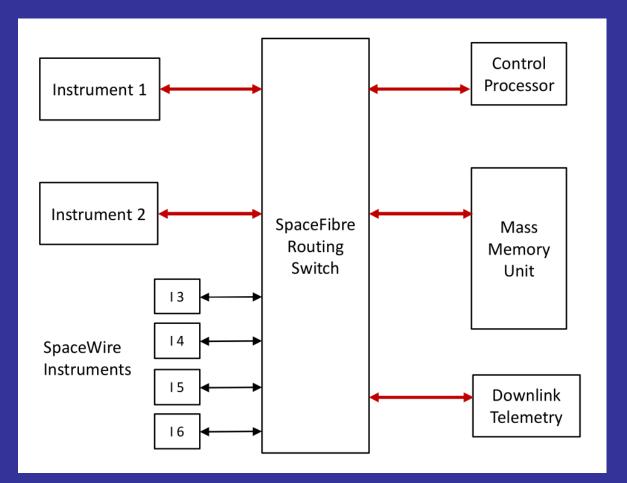
STAR-Dundee

20 Years of Spacecraft Networking Innovation

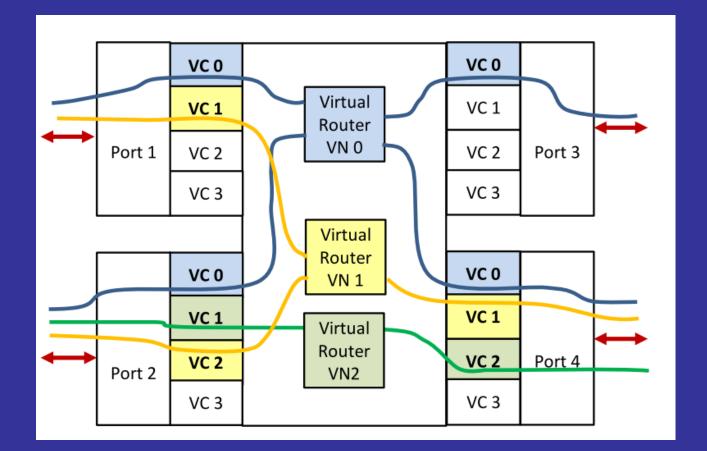
SpaceFibre Multi-Lane Routing Switch IP


Albert Ferrer Florit, Alberto Gonzalez Villafranca, Marti Farras Casas, Steve Parkes

www.star-dundee.com

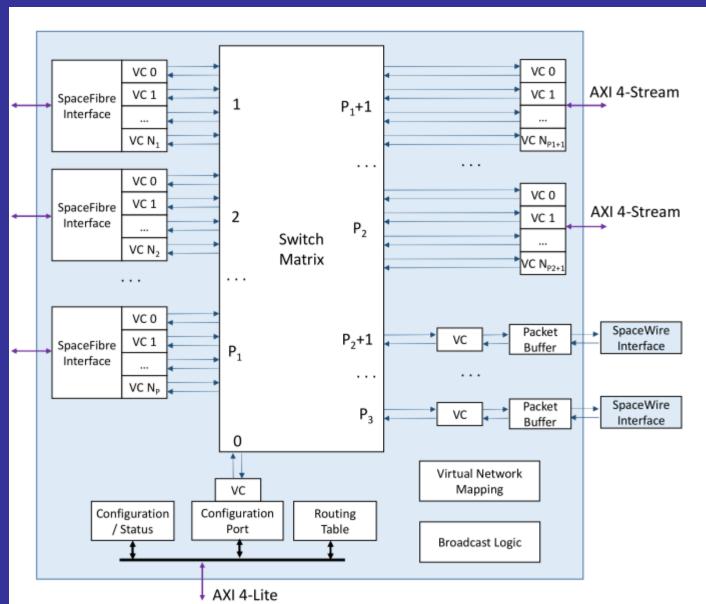
@STAR_Dundee

SpaceFibre Network


SpaceFibre links carries SpaceWire packets with much more functionality:

- Gigabit rates
- Multiple lanes
- Broadcast messages
- Reliable data transfer with error recovery
- virtual channels with QoS

SpaceFibre Virtual Networks


 A SpaceFibre Router IP implements a high performance SpaceWire Routing Switch for each virtual network defined.

Router Architecture

4

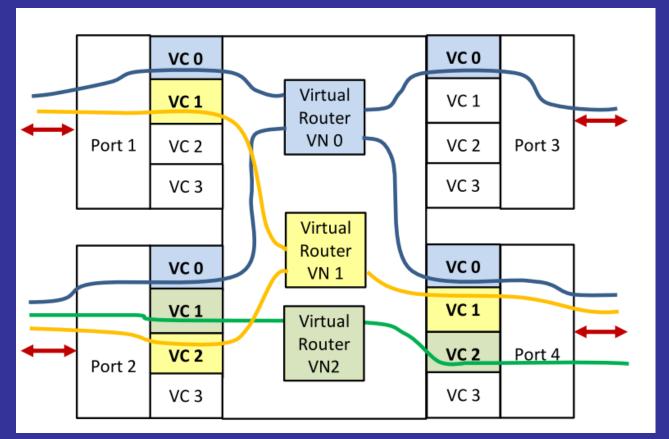
Routing Switch Features

- Technology independent (FPGA or ASIC) but optimised for radiationhardened FPGAs.
- Configurable number of SpaceFibre, SpaceWire and internal AXI4-Stream ports.
- Configurable SpaceFibre lane rate, number of lanes, and number of virtual channels per port.
- Configurable target technology (RTG4, PolarFire, Xilinx Kintex/UltraScale/Versal, generic) for memory blocks and Serdes interface.
- Up to 64 virtual networks that can be statically or dynamically configured.
- Router configuration registers can be accessed via a configuration port using RMAP or using a dedicated AXI interface.

6

Routing Switch Features (2)

- High performance, full non-blocking switch matrix with deterministic switching latency. Virtual Networks do not share any switching resources.
- Round-robin arbitration with watchdog timeout for packets in the same virtual network requesting the same output port.
- SpW/SpFi network capabilities such as path and logical addressing with a routing table.
- Up to 256 broadcast channels with higher priority for time-critical broadcast messages.
- Simple and efficient integration with SpaceWire networks using SpaceWire packet buffers and automatic SpW to SpFi broadcast translation.
- Internal timer tracks time being distributed over the network.


Routing Switch Configuration

Static VHDL parameters (before Synthesis)

- Target technology
- Number and type of ports (SpW, SpFi, AXI)
- Number of Lanes
- Lane rate
- VCs per port
- Default value of the routing table
- Virtual Network setup
- After Power-On
 - Memory map accessible via:
 - 1. Port 0 with RMAP
 - 2. AXI4-Lite internal bus (for embedded CPU)

Virtual Network Configuration

VN number	Virtual channel number							
v N number	Port 1	Port 2	Port 3	Port 4				
0	0	0	0	0				
1	1	2	-	1				
2	-	1	-	2				

Memory Map

Region																	Start
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0	
Legacy support	0	0		I	1	1	1	R	esei	rved	1		<u> </u>			I	0x0
Device Information	0	1	0	0	0	0	0				Reg	ister	Sel	ect			0x4000
Routing Table	0	1	0	0	0	0	1	Logical Address Sel				Sel	0x4200				
Network Management	0	1	0	0	0	1	0	Register Select				0x4400					
Broadcast Notification	0	1	0	0	0	1	1	Register Select			0x4600						
Device Specific	0	1	1 Register Select						0x6000								
VC Information	1		Por	ort Number			0		VC	Nun	nber		Re	egist	er S	elect	0x8000
Port Information	1		Por	ort Number 1 0 0 Register Select					0x8200								
Link Information	1		Por	Port Number 1 0 1 Register Select					0x8280								
Lane Information	1		Por	t Number 1 1 0 Lane Regs Number Select				0x8300									
Reserved	1		Por	t Nun	nber		1	1	1			R	ese	rved			0x8380

9

Packet Addressing

- First byte of each received packet is the packet address.
 - Determines the destination port using logical or path addressing
 - Virtual channel within the destination port is determined by the Virtual Network
- Path addressing supports:
 - Leading Fill characters
 - Path address is replaced by a Fill character.
 - Path address removal when not leading fill is present

Source	1st Hop	Destination		
01 02 FE 10	02 FE 10 11	FE 10 11 12		
11 12 13 14	12 13 14 15	13 14 15 16		
ØØ0102	Ø Ø Ø 02	FE 10 11 12		
FE 10 11 12	FE 10 11 12	13 14 15 16		

SpaceWire Packet Buffers

- Each SpW port has:
 - A Packet Buffer on its receive side.
 - A FIFO Buffer on its transmit side.
- Packet Buffer:
 - Buffers packets arriving over the SpW port. It only forwards full packets to the SpFi VN.
 - The VC sending the SpW packet is not held up by the slower SpW interface.
 - If the incoming packet is larger than the size of the Packet Buffer there is a configurable option to spill the remaining of the packet.
- FIFO buffer:
 - Does not hold the full packet so it supports any packet size.

Watchdog Timeout Mechanism

- Packet blocking in a Virtual Network does not affect packets in another Virtual Network:
 However, within the same Virtual Network, package blocking can still occur.
- Causes of packet blocking:
 - Source stalls and stops transmitting bytes of a SpW packet while the packet is being routed.
 - Destination stalls and stops receiving bytes of a SpW packet while the packet is being routed.
 - A package is blocked due to another packet being blocked.
 - This can only occur if both use the same Virtual Channel
- The Routing Switch implements a watchdog timer to prevent indefinitely packet blocking:
 - When the packets transfer stops the watchdog timer is started.
 - When the maximum time elapses, the packet is spilled.
 - Independent watchdog timer for each Virtual Channel.

Broadcast messages

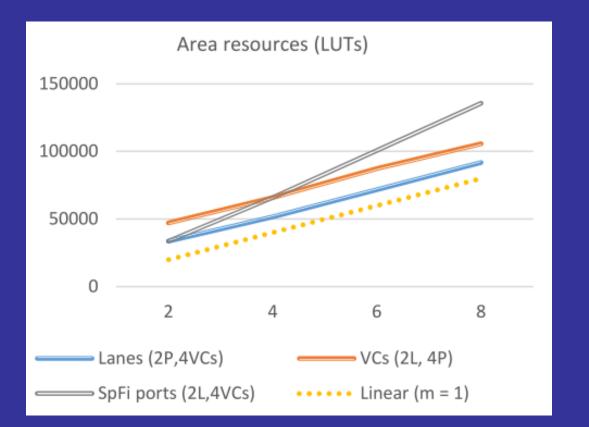
- Broadcast messages types:
 - SpaceWire Time-Code
 - SpaceWire Interrupt
 - SpaceFibre Time-Slot
 - SpaceFibre CCSDS Time

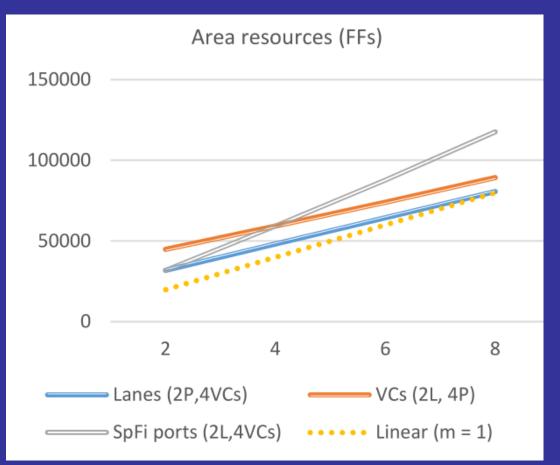
- SpW broadcast codes are translated to SpFi broadcast message.
- SpaceFibre Routing Switch local time is synchronised with network time.

0	7	8 15	16 23	24 31
	СОММА	SBF	Broadcast Channel	Broadcast Type
	lot or Time-Code terrupt code	0x0	0x0	0x0
E	it-Inverse	Bit-Inverse	Bit-Inverse	Bit-Inverse
	EBF	RSVD/LATE	SEQ_NUM	CRC

0	7	8	15	16	23	24	31
	COMMA	SBF		Broadcast	Channel	Broadca	st Type = 0
	ATA 1 LS ional Byte LS	DATA Franctiona	_	DATA Franctional	_		A 1 MS Byte 0 LS
	ATA 2 LS nds Byte 1	DATA Seconds B	-	DATA Seconds 1	_		A 2 MS Byte 4 MS
	EBF	RSVD/L	ATE	SEQ_N	IUM	c	RC

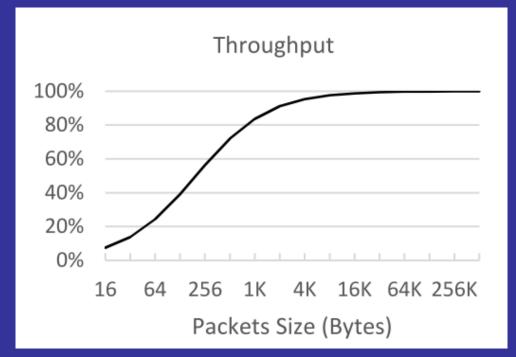
Synthesis Results


- The Routing Switch has been designed to achieve timing closure at the highest data rates supported by the transceivers available in existing radiation-tolerant technologies.
 - lane rates of 3.125 Gbps in RTG4
 - 6.25 Gbps in PolarFire FPGAs.
 - >6.25 Gbps in UltraScale and Versal Xilinx devices


		RTG4		XQRKU060 *			
	LUT	DFF	LSRAM	LUT	DFF	RAMB36	
2L6P	48043	44434	59	28579	42829	33.5	
2 VCs	31.6%	29.3%	28.2%	8.6%	6.5%	3.1%	
2L10P	139644	116463	171	82625	109168	101.5	
4 VCs	92.0%	76.7%	81.2%	24.9%	16.5%	9.4%	
4L6P	77279	69216	117	46808	65607	61.5	
2 VCs	50.9%	45.6%	56.0%	14.1%	9.9%	5.7%	
4L10P				128600	158420	185.5	
4 VCs	-	-	-	38.8%	23.9%	17.2%	

Synthesis Results in PolarFire

 The Routing Switch has been optimised for timing and to scale well when the number of lanes, ports, and VCs is increased.



Performance results

 Achieve full bandwidth of the SpFi interfaces without any dependency on the number of simultaneous data flows within the router.

	Path addressing	Logical Addressing			
Packet Latency	34 clock cycles	38 clock cycles			
Switching Latency	22 clock cycles	25 clock cycles			
Broadcast Latency	10 Clock cycles				

Hardware Implementation

- STAR-Tiger implemented in the Hi-SIDE project with 10 SpaceFibre ports:
 - Two quad-lane ports
 - Eight dual-lane ports
 - Lane speed up to 6.25 Gbit/s
 - Port data rate 19.2 Gbit/s (quad-lane) and 9.6 Gbit/s (dual-lane port)

- STAR-Dundee has developed a SpFi Multi-Lane Routing Switch IP
 - -Easy to use and highly configurable
 - -Achieve the highest lane rates on space-grade FPGAs
 - -Scales well with increasing number of lanes, ports and virtual channels.
 - -Implements SpaceWire to SpaceFibre bridge
 - -Validated within a full satellite data-chain technology demonstrator.