

STP-ISS ASSESSMENT IN DETERMINISTIC SPACEWIRE NETWORK WITH MOST SIMULATOR

ISC2022: Paper number 70, B.Attanasio

 Date:
 17/10/2022

 /// 1
 Ref:
 0005-0012634704

 Template:
 83230347-DOC-TAS-EN-006

PROPRIETARY INFORMATION

This document is not to be reproduced, modified, adapted, published, translated in any material form in whole or in part nor disclosed to any third party without the prior written permission of Thales <u>Alenia</u> Space. © 2022 Thales <u>Alenia</u> Space All rights reserved

TABLE OF CONTENTS

1

Overview of STP-ISS

MOST Simulator Presentation

Implementation & Validation

3

4 c

Comments & Remarks

 Date:
 17/10/2022

 /// 2
 Ref:
 0005-0012634704

 Template:
 83230347-DOC-TAS-EN-006

PROPRIETARY INFORMATION

This document is not to be reproduced, modified, adapted, published, translated in any material form in whole or in part nor disclosed to any third party without the prior written permission of Thales <u>Alenia</u> Space. © 2022 Thales <u>Alenia</u> Space Al inghts reserved

OVERVIEW OF STP-ISS TRANSPORT PROTOCOL

PROPRIETARY INFORMATION

This document is not to be reproduced, modified, adapted, published, translated in any material form in whole or in part nor disclosed to any third party without the prior written permission of Thales <u>Alenia</u> Space. © 2022 Thales <u>Alenia</u> Space Ali rights reserved

- Protocol (from Russia), created by engineers of the:
 - St. Petersburg State University of Aerospace Instrumentation
 - ISS-Reshetnev
- Lastly updated in 2017: STP-ISS-14E
- Why has it been created?
 - SpaceWire network can lead to congestion in some cases.

<u>example</u> : if a node is emitting permanently, the only solution is to cut it off in the network to be able to take the control back

• STP-ISS offers a better flexibility to the network by introducing mechanisms

PROPRIETARY INFORMATION

This document is not to be reproduced, modified, adapted, published, translated in any material form in whole or in part nor disclosed to any third party without the prior written permission of Thales <u>Alenia</u> Space. © 2022 Thales <u>Alenia</u> Space Al rights reserved

- STP-ISS in the OSI model
 - Transport protocol
 - End-point side
 - Operates over the basic SpaceWire protocols
 - Layer between Application and SpaceWire
 - Specific PID: 252

Specificities

- Data flow control with Priority QoS
- Fast transmission with Best Effort QoS
- Safe transmission with Guaranteed QoS
- Predictibility with Scheduling QoS
- Large datas transmission with Connection-Oriented mode

/// 5 Date: 17/10/2022 /// 5 Ref: 0005-0012634704 Template: 83230347-DOC-TAS-EN-006

PROPRIETARY INFORMATION

This document is not to be reproduced, modified, adapted, published, translated in any material form in whole or in part nor disclosed to any third party without the prior written permission of Thales <u>Alenia</u> Space. © 2022 Thales <u>Alenia</u> Space All rights reserved

QOS PRESENTATION

Priority QoS

1. Acknowledgement packets, TC acknowledgement packets

- 2. Control command packets
- 3. Resent control command packets
- 4. Connection-oriented mode service packets
- 5. Credit sync service packets
- 6. Urgent messages packets
- 7. Resent urgent messages packets
- 8. Resent regular messages packets
- 9. Regular messages packets
- Ievel of priority → maybe too much for space application?
- 9 buffers → impact of FPGA footprint size

Actual order of arbitration: 1) req 2

- 2) req 1
- 3) req 3

Advantages: reduces latency of high priority packet

Disadvantages: low priority packet may never be sent

THALES ALENIA SPACE LIMITED DISTRIBUTION

PROPRIETARY INFORMATIO

This document is not to be reproduced, modified, adapted, published, translated in any material form in whole or in part nor disclosed to any third party without the prior written permission of Thales <u>Alenia</u> Space. © 2022 Thales <u>Alenia</u> Space Al inghts reserved

Date: 17/10/2022

QOS PRESENTATION

Date: 17/10/2022 /// 7 Ref: 0005-0012634704 Template: 83230347-DOC-TAS-EN-006

PROPRIETARY INFORMATION

This document is not to be reproduced, modified, adapted, published, translated in any material form in whole or in part nor disclosed to any third party without the prior written permission of Thales <u>Alenia</u> Space. © 2022 Thales <u>Alenia</u> Space All rights reserved

Best Effort QoS

- · data transmission without any service
- the receiver shall check the correctness of the data and transmit the packet to the application layer

Advantages: fast transmission

Disadvantages: no deterministic services

- Scheduling QoS
 - data transmission in accordance with a schedule at the network level synchronized thanks to timecodes.
 - This adds a feature which is required for some cases where a time minimum bandwidth is reserved for one end-point

Advantages: all the priority packet can be sent

Disadvantages: some packets may be lost due to lifetime timer expiration while waiting for the next allocated time-slot

 Date:
 17/10/2022

 /// 8
 Ref:
 0005-0012634704

 Template:
 83230347-DOC-TAS-EN-006

PROPRIETARY INFORMATION

This document is not to be reproduced, modified, adapted, published, translated in any material form in whole or in part nor disclosed to any third party without the prior written permission of Thales <u>Alenia</u> Space. © 2022 Thales <u>Alenia</u> Space.

PRESENTATION OF MOST

 Date:
 17/10/2022

 /// 9
 Ref:
 0005-0012634704

 Template:
 83230347-DOC-TAS-EN-006

PROPRIETARY INFORMATION

This document is not to be reproduced, modified, adapted, published, translated in any material form in whole or in part nor disclosed to any third party without the prior written permission of Thales <u>Alenia</u> Space. © 2022 Thales <u>Alenia</u> Space All rights reserved

MOST PRESENTATION

Goal of MOST Simulator: •

/// 10

Template: 83230347-DOC-TAS-EN-006

- To support SpW network design and optimization
- To allow SpW networks performances analysis from the beginning, without waiting for system testing phase
- To offer a progressive tool for SpW experts who would like to integrate specific SpW components, or to update existing library with regard to standard upgrades
- MOST can be used during all phases of a project:
 - Phase A and before: performs evaluations, starting from a preliminary specification of network and nodes
 - Phase B: consolidate design by enhancing and completing nodes models behavior in terms of data provider and consumer
 - Phase C and D: design, validation and investigation.

© 2022 Thales Alenia Space All rights reserved

MOST USED FOR STANDARDIZATION AND TESTS

Help to implement new standards to perform early tests before implementation and adoption

- MOST is based on the following standards:
 - ECSS-E-ST-50-11C
 - → SpaceFibre
 - ECSS-E-ST-50-12C
- \rightarrow SpaceWire Links, nodes, routers and network
- → SpaceWire Protocol IDentification
- ECSS-E-ST-51C
 ECSS-E-ST-52C
 ECSS-E-ST-53C
- → Remote memory access protocol
 - → CCSDS packet transfer protocol
- New standards implemented in MOST:
 - D1-SpaceWire Net Management_Service → SpaceWire-NMS
 STP-ISS-14E-specification → STP-ISS
 SpaceWire-D → SpaceWire-D

s3/					
sro	;/				
	spacewire/				
	model/				
	СРТР	STP-ISS	NMS		
	RMAP	SpW-natif	SpW-D		
	helper/ Utilization of the brick model to build components, example: 10X Router, CPTP Emitter				
	spacefibre/				
	can/				
	1553/				

MOSTNs3 (simulation core)

 Date:
 17/10/2022

 ///
 11
 Ref:
 0005-0012634704

 Template:
 83230347-DOC-TAS-EN-006

PROPRIETARY INFORMATION

This document is not to be reproduced, modified, adapted, published, translated in any material form in whole or in part nor disclosed to any third party without the prior written permission of Thales <u>Alenia</u> Space. © 2022 Thales <u>Alenia</u> Space All rights reserved

STP-ISS IMPLEMENTATION IN MOST SIMULATOR AND ITS VALIDATION

 Date:
 17/10/2022

 ///
 12
 Ref:
 0005-0012634704

 Template:
 83230347-DOC-TAS-EN-006

PROPRIETARY INFORMATION

This document is not to be reproduced, modified, adapted, published, translated in any material form in whole or in part nor disclosed to any third party without the prior written permission of Thales <u>Alenia</u> Space. © 2022 Thales <u>Alenia</u> Space Ali rights reserved

DEVELOPMENT OF A NEW STP-ISS NODE

- Impact at the end-point level, nothing at switch level
- STP-ISS level between Application level and Native SpaceWire level
- Packet construction & QoS management:

	Target SpW address		Target Sp	N address
Target logical address	PID	Flags (MSB)	Flags (LSB)	
Application ID	Packet ID number	Data length (MSB)	Data length (LSB)	
Source logical address			Source logi	cal address
Source logical address	Reserved	Reserved	Rese	erved
Data	Data	Data	Da	ata
Data			Da	ata
Data	CRC (MSB)	CRC (LSB)	EOP	

· Store in the associated buffer defined in STP-ISS

Date: 17/10/2022 /// 13 Ref: 0005-0012634704

Template: 83230347-DOC-TAS-EN-006

PROPRIETARY INFORMATION

This document is not to be reproduced, modified, adapted, published, translated in any material form in whole or in part nor disclosed to any third party without the prior written permission of Thales <u>Alenia</u> Space. © 2022 Thales <u>Alenia</u> Space All rights reserved

IMPLEMENTATIONS MECHANISMS

- Steps to emit a message:
- 1. Packet construction
- 2. Place in corresponding buffer

3. Choice of next message to send

4. If Guaranteed QoS activated, keep copy in resend buffer

 Date:
 17/10/2022

 ///
 14
 Ref:
 0005-0012634704

 Template:
 83230347-DOC-TAS-EN-006

PROPRIETARY INFORMATION

This document is not to be reproduced, modified, adapted, published, translated in any material form in whole or in part nor disclosed to any third party without the prior written permission of Thales <u>Alenia</u> Space. © 2022 Thales <u>Alenia</u> Space All rights reserved

PROPRIETARY INFORMATION

This document is not to be reproduced, modified, adapted, published, translated in any material form in whole or in part nor disclosed to any third party without the prior written permission of Thales <u>Alenia</u> Space. © 2022 Thales <u>Alenia</u> Space All rights reserved

- Basic Tests have been carried out:
 - point-to-point network realization
 - small architecture with a single router for QoS scheduling
- One for each characteristic:
 - standard STP-ISS characteristics and parameters
 - One section for each QoS
- Principles: traces sources of NS3 to validate the implementation
- Finally, Complex network simulation using STP-ISS end-points: MTG

PROPRIETARY INFORMATION

This document is not to be reproduced, modified, adapted, published, translated in any material form in whole or in part nor disclosed to any third party without the prior written permission of Thales <u>Alenia</u> Space. © 2022 Thales <u>Alenia</u> Space.

SpaceWire Network architecture of MTG designed with MOSTGUI:

Traffic definition:

Source	Destination	Useful Data	Packet Type	Guaran teed	Packet Size	Period
u	VC3	Mission Data	Regular		1024 bytes	274us
DCP	VC5	Mission Data	Regular		1016 bytes	221us
SMU	VC0	НК	Regular		103 bytes	206ms
SMU	VC1	Memory dump report	Control Command	Yes	103 bytes	275ms
SMU	VC2	Auxiliary reports	Urgent		103 bytes	4,12ms
SMU	SCAE	Work plan	Urgent	Yes	4104 bytes	4,10ms
SCAE	VC4	Mission Data	Urgent		943 bytes	50ms
SCAE	VC4	Mission Data	Urgent		727 bytes	50ms
VAE	FPGA	Mission Data	Urgent		1425 bytes	1,5112 ms
VAE	FPGA	Mission Data	Urgent		4449 bytes	1,5112 ms
VAE	FPGA	Mission Data	Urgent		1425 bytes	1,5112 ms
VAE	FPGA	Mission Data	Urgent		5457 bytes	1,5112 ms
FPGA	VC4	Mission Data	Urgent		1425 bytes	1,5112 ms
FPGA	VC4	Mission Data	Urgent		4449 bytes	1,5112 ms
FPGA	VC4	Mission Data	Urgent		1425 bytes	1,5112 ms
FPGA	VC4	Mission Data	Urgent		5457 bytes	1,5112 ms
ICU	VC4	Auxiliary Reports	Regular		1024 bytes	150000 ms

Only 3 priorities are used

Simulation results and conclusion:

- loss of priorities on the switch output ports
- some packets dropped due to life timer expiration
- latency greater than
 1ms for some high
 priority packets

 Date:
 17/10/2022

 ///
 17
 Ref:
 0005-0012634704

 Template:
 83230347-DOC-TAS-EN-006

PROPRIETARY INFORMATION

This document is not to be reproduced, modified, adapted, published, translated in any material form in whole or in part nor disclosed to any third party without the prior written permission of Thales <u>Alenia</u> Space. © 2022 Thales <u>Alenia</u> Space All rights reserved

COMMENTS & REMARKS

 Date:
 17/10/2022

 ///
 18
 Ref:
 0005-0012634704

 Template:
 83230347-DOC-TAS-EN-006

PROPRIETARY INFORMATION

This document is not to be reproduced, modified, adapted, published, translated in any material form in whole or in part nor disclosed to any third party without the prior written permission of Thales <u>Alenia</u> Space. © 2022 Thales <u>Alenia</u> Space All rights reserved

THALES ALENIA SPACE LIMITED DISTRIBUTION

ThalesAlenia

Scheduling QoS: What happens when a message is buffered in a non-allowed time-slot?

Conclusion:

- 1. Forcing the SW to buffer during allowed time-slots (constraints SW)
- 2. Letting the packet discard if not well configured

Defined in the specification: Lifetime timer < Time-slot duration

	Configuration parameter	Default value
	Control command packet lifetime	1,25 ms
	Urgent message packet lifetime	2 ms
	Regular message packet lifetime	4 ms
	TC urgent message packet lifetime	64 ms
	TC regular message packet lifetime	128 ms
	Resend timer value	1 ms
	TC packet resend timeout	64 ms
	Guaranteed QoS	Off
	Scheduling	Off
_	Time-slot number	32
	Time-slot duration	31,25 ms
	Schedule	Transmission allowed in all time-slots
	Time-code relevancy window	2
	TC stand-by timeout	525 ms

Date: 17/10/2022 Ref: 0005-0012634704

/// 19 Ref: 0005-0012634704 Template: 83230347-DOC-TAS-EN-006

PROPRIETARY INFORMATION

This document is not to be reproduced, modified, adapted, published, translated in any material form in whole or in part nor disclosed to any third party without the prior written permission of Thales <u>Alenia</u> Space. © 2022 Thales <u>Alenia</u> Space All rights reserved

REMARKS ON THE STP-ISS SPECIFICATION

- Selection of priority only at the end-point level → loss of the notion of priority in SpaceWire Routers
- SpaceWire Routers use Round-Robin Arbitration
- Solution: add a specific router for STP-ISS, which would follow the **arbitration with priorities**

 Date:
 17/10/2022

 /// 20
 Ref:
 0005-0012634704

 Template:
 83230347-DOC-TAS-EN-006

PROPRIETARY INFORMATION

This document is not to be reproduced, modified, adapted, published, translated in any material form in whole or in part nor disclosed to any third party without the prior written permission of Thales <u>Alenia</u> Space. © 2022 Thales Alenia Space All rights reserved

- Attractive solution to improve the quality of the SpaceWire protocol
- Priority mechanism enables to configure and manage mixed-criticality traffic
- Scheduling and Guaranteed QoS bring a high level of determinism having guaranteed delivery and guaranteed bandwidth.
- Lack of deterministic mechanism implemented at the router level.
- Only simulation part of the mechanism of the STP-ISS data transport protocol

 → no HW implementation and no FPGA footprint size estimation: depend on the size of buffers at endpoint level.

 Date:
 17/10/2022

 /// 21
 Ref:
 0005-0012634704

 Template:
 83230347-DOC-TAS-EN-006

PROPRIETARY INFORMATION

This document is not to be reproduced, modified, adapted, published, translated in any material form in whole or in part nor disclosed to any third party without the prior written permission of Thales <u>Alenia</u> Space. © 2022 Thales <u>Alenia</u> Space Al rights reserved

QUESTIONS?

 Date:
 17/10/2022

 ///
 22
 Ref:
 0005-0012634704

 Template:
 83230347-DOC-TAS-EN-006

PROPRIETARY INFORMATION

This document is not to be reproduced, modified, adapted, published, translated in any material form in whole or in part nor disclosed to any third party without the prior written permission of Thales <u>Alenia</u> Space. © 2022 Thales <u>Alenia</u> Space Ali rights reserved

