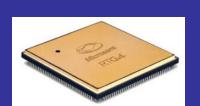
STAR-Dundee

20 Years of Spacecraft Networking Innovation

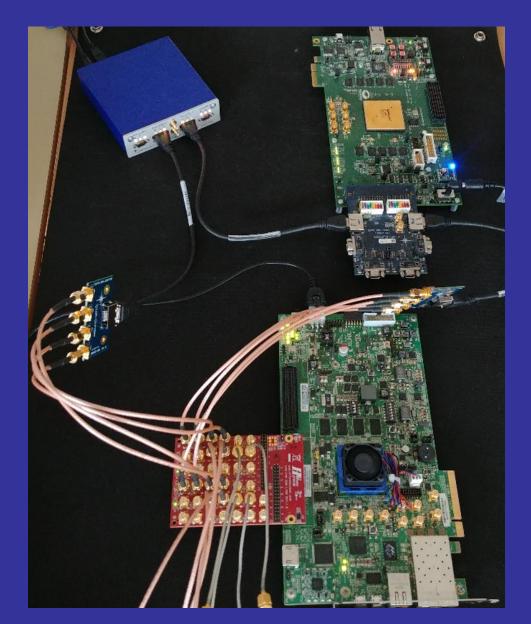
SpaceFibre IP Cores for the Next Generation of Radiation-Tolerant FPGAs

Alberto Gonzalez Villafranca, Albert Ferrer Florit, Marti Farras Casas, Steve Parkes

www.star-dundee.com @STAR_Dundee


Introduction - SpaceFibre

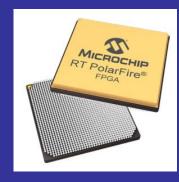
Spacecraft Networking Innovation


- Compatible with SpaceWire packet and network level
 - Because it transfers SpaceWire packets
 - Supports any packet length
- Provides data integrity and reliable data delivery
 - Automatically recovers from transient errors in less than 2 µs
 - Lane is automatically reinitialised if BER is worse than 10⁻⁵
- Multiple concurrent data flows over the same link with QoS
 - VCs have priority, bandwidth allocation and scheduling QoS
- Low latency broadcast messages (< 1 µs)
 - Broadcasted to all nodes in a network
 - Guaranteed that same message is not received twice
- Multi-lane capabilities
 - Arbitrary number of lanes with graceful degradation when a lane fails.
 - Warm redundancy recovers from a lane failure in less than 80 µs
 - Hot redundancy recovers from a lane failure in less than 3 µs

New Generation FPGAs for Space

- Microchip RTG4
 - 65 nm
 - Flash-based Non-volatile
 - Radiation-hardened by design
 - 24x SerDes @ 3.125 Gbit/s
- Xilinx Kintex UltraScale
 - 20 nm
 - SRAM-based Volatile
 - Radiation-tolerant
 - 32x SerDes @ 12.5 Gbit/s

New Generation FPGAs for Space


- NanoXplore BRAVE family (NG-Large / NG-Ultra)
 - 65 / 28 nm FD-SOI
 - SRAM-based Volatile
 - Radiation-hardened by design
 - 4x SerDes @ 6 Gbit/s / 32x SerDes @ 12.5 Gbit/s

- Microchip RTG4
 - 65 nm
 - Flash-based Non-volatile
 - <u>Radiation-hardened</u> by design Radiation-tolerant
 - 24x SerDes @ 3.125 Gbit/s
- Xilinx Kintex UltraScale
 - 20 nm
 - SRAM-based Volatile
 - Radiation-tolerant
 - 32x SerDes @ 12.5 Gbit/s

- Microchip PolarFire
 - 28 nm
 - SONOS-based Non-volatile

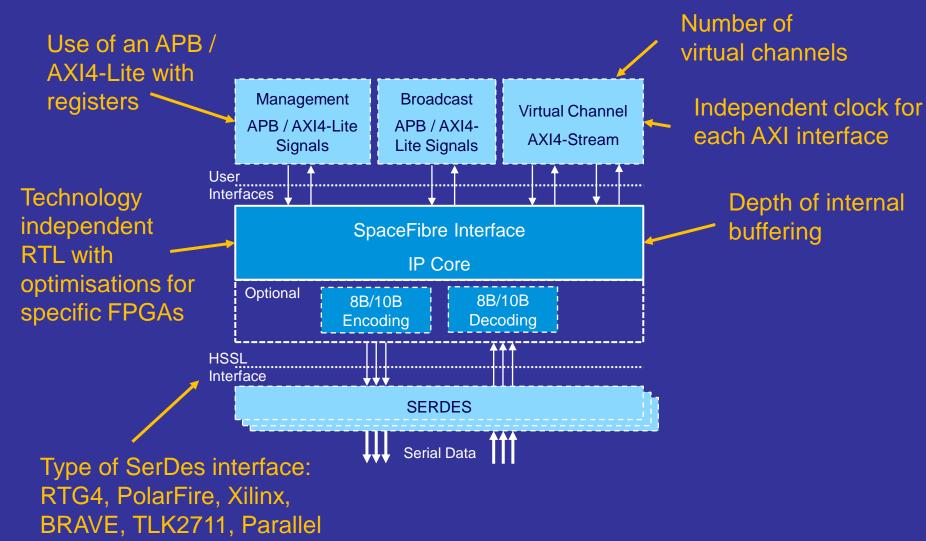
 - 24x SerDes @ 10 Gbit/s
- Xilinx Versal
 - 7 nm FinFET
 - SRAM-based Volatile
 - Radiation-tolerant
 - 44x SerDes @ 25 Gbit/s

SpaceFibre IP Cores General Features

- Configurable
 - Number of lanes, virtual channels, ports
 - Type of SerDes and configuration interface
- High performance
 - Optimised for radiation hardened FPGAs
 - Low latency
- Easy to use
 - AXI4-Stream interface for each VC
 - Reference designs for RTG4, PolarFire, KUS, Versal, BRAVE...
 - ASIC-ready

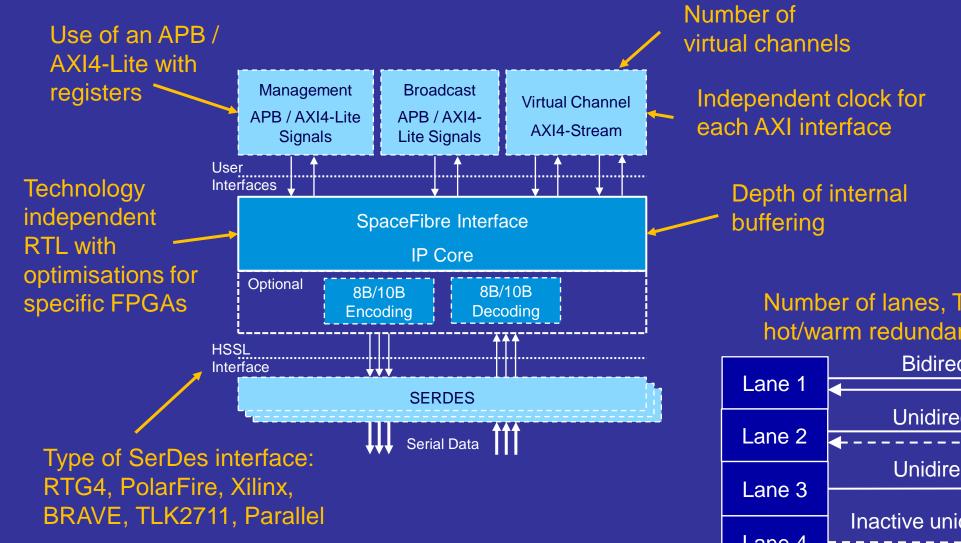
Safe

- Extensive verification and validation
- Tested in radiation environment

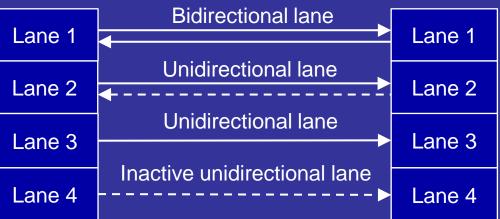


SpaceFibre IP Cores General Features

- Use of EDAC protection in memories
- Guaranteed, straightforward, timing closure
 - Lane rate only limited by Serdes (e.g. up to 3.125 Gbps on RTG4)
 - For the whole temperature and voltage range (i.e. fast & slow corners)
 - With EDAC and SET filters
 - Does not require specific placement or timing constraints.
 - Even with more than 80% FPGA utilisation
- Low latency
 - Less than 400 ns for Broadcasts (including 250ns due to SerDes latency)
 - Streaming frame sending option
- Compact design



SpaceFibre IP Interfaces



SpaceFibre IP Interfaces

Number of lanes, Tx/Rx unidirectional lanes, hot/warm redundancy

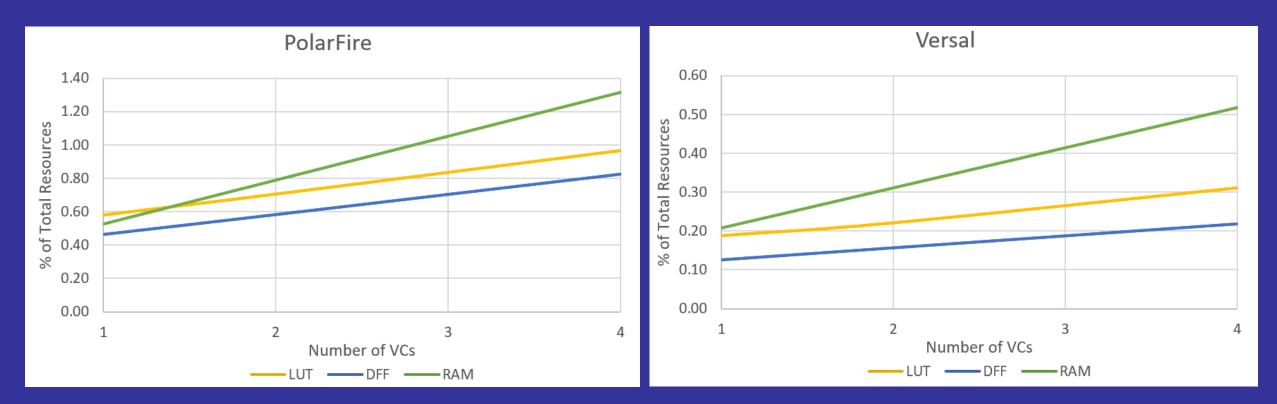
SpaceFibre IP @ BRAVE

20 Years of Spacecraft Networking Innovation

STAR-Dundee

- Successful link connection established with STAR-Fire unit
 - Correct data transmission <u>without any</u> <u>data errors</u>
- Retry events periodically appear $\overline{\mathfrak{S}}$
- Currently debugging this problem in collaboration with NanoXplore
 - The final validation of the IP to be completed soon
 - Reference design with SerDes configuration, clock scheme details, memory instantiation (EDAC), etc. provided with IP

SpaceFibre Single-Lane Interface IP Resources


		RTG4	4	XQRKU060 *		
	LUT	DFF	LSRAM	LUT	DFF	RAMB36
1	3316	2365	4	1823	2346	4
VC	2.2%	1.6%	1.9%	0.5%	0.4%	0.4%
2	3960	2946	6	2162	2969	6
VCs	2.6%	1.9%	2.9%	0.7%	0.4%	0.6%
4	5389	4114	10	2960	4214	10
VCs	3.5%	2.7%	4.8%	0.9%	0.6%	0.9%

	H	RTPF50	0T *	X	QRVC1902 *		
	LUT	DFF	LSRAM	LUT	DFF	RAMB36	
1	2796	2226	8	1687	2272	2	
VC	0.6%	0.5%	0.5%	0.2%	0.1%	0.2%	
2	3400	2801	12	1985	2824	3	
VCs	0.7%	0.6%	0.8%	0.2%	0.2%	0.3%	
4	4653	3972	20	2796	3923	5	
VCs	1.0%	0.8%	1.3%	0.3%	0.2%	0.5%	

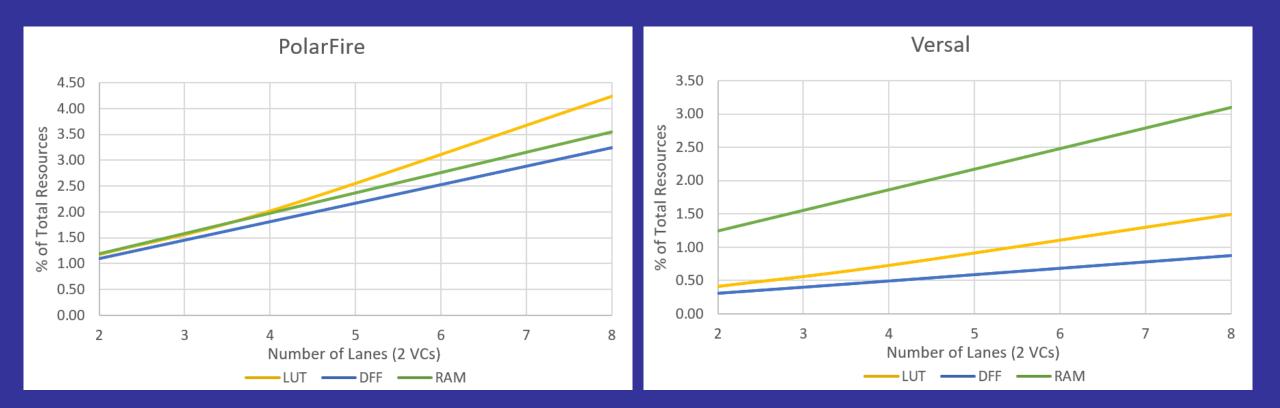
SpaceFibre Single-Lane Interface IP Resources

- TMR in PolarFire
 - DFF ~ x 2.8
 - LUT ~ x 2

SpaceFibre Single-Lane Interface IP Resources

- NG family share the same type of fabric resources
 - IP implementation expected to use the same resources in NG-Large and NG-Ultra
- In terms of % of resource usage for the SpFi IP Core
 - NG-Large is equivalent to the RTG4
 - NG-Ultra is equivalent to the PolarFire

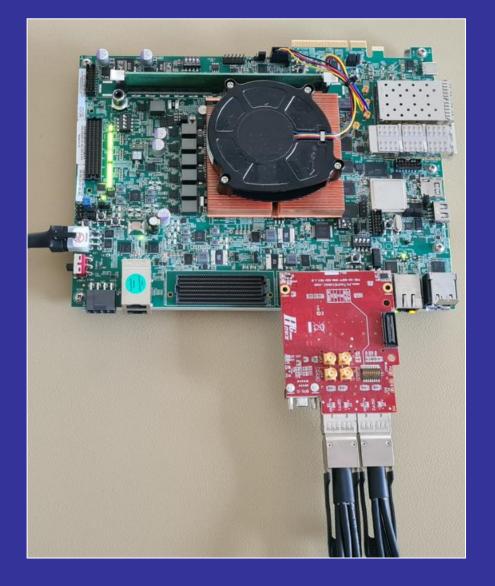
	Ν	NG-Larg	ge	NG-Ultra		
	LUT	DFF	RAM	LUT	DFF	RAM
1	2703	2496	8	2703	2496	8
VC	2.0%	1.9%	4.2%	0.5%	0.5%	1.2%
2	3275	3068	12	3275	3068	12
VCs	2.4%	2.4%	6.3%	0.6%	0.6%	1.8%
4	4350	4220	20	4350	4220	20
VCs	3.2%	3.3%	10.4%	0.8%	0.8%	3.0%



SpaceFibre Multi-Lane Interface IP Core

- Multi-Lane is an optional capability of the SpFi standard
- Allows several physical lanes to behave as a single logical link
 - Higher throughput
 - Redundancy
 - Hot (< 3 μs) & Warm (< 80 μs)</p>
- Lanes can be operated independently
 - Any number of lanes supported
 - Unidirectional lanes supported

SpaceFibre Multi-Lane Interface IP Resources



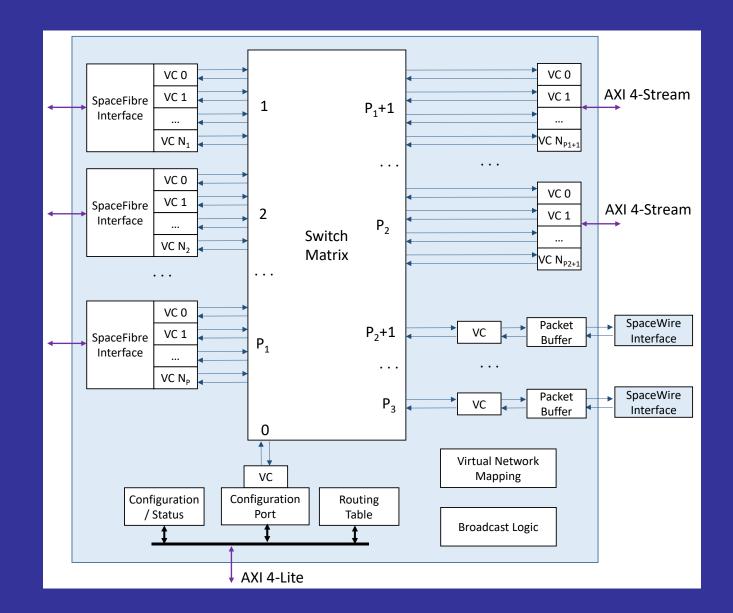
Values for different configurations (2/4/8 Lanes and 1/2/4 VCs) available the paper

SpaceFibre Multi-Lane Interface IP Implementation

SpaceFibre Routing Switch IP Core

Full non-blocking switch matrix

- Fully configurable
 - Port type
 - SpaceFibre \rightarrow Number of lanes, VCs
 - AXI4-Stream Internal \rightarrow Number of VCs
 - SpaceWire
 - Target technology
- Deterministic low latency switching
- Supports path, logical addressing and group adaptive routing



SpaceFibre Routing Switch IP Core

- Each virtual channel of each port can be configured to belong to any virtual network.
- Configuration port with RMAP protocol
- Isolates each virtual network using priority, scheduling and bandwidth reservation QoS.
- Within the same virtual network:
 - There is packet by packet round robin arbitration for packets going to the same output port
 - Automatic packet spill on timeout event caused by unexpected packet blocking, using a configurable virtual channel time-out period.
 - Additional timeout timers to detect a babling node

SpaceFibre Routing Switch IP Core

SpaceFibre Single-Lane Routing Switch IP Resources

- SpFi Interface IP Cores are <u>included</u>
- Additional Configuration port and RMAP target is also included
- Port count includes 1x internal AXI4-Stream (2 VCs) and 1x SpW ports

	RTG4			XQRKU060 *		
	LUT	DFF	LSRAM	LUT	DFF	RAMB36
6 Port	31782	27393	47	17984	28090	48
2 VCs	20.9%	18.0%	22.5%	5.4%	4.2%	4.4%
10 Port	98540	76035	127	55917	78051	128
4 VCs	64.9%	50.1%	60.8%	16.9%	11.8%	11.9%

	R	TPF5007	*	XQRVC1902 *		
	LUT	DFF	LSRAM	LUT	DFF	RAMB36
6 Port	29938	26943	93	17098	27652	48
2 VCs	6.2%	5.6%	6.1%	1.9%	1.5%	5.0%
10 Port	93526	75905	253	53800	75867	128
4 VCs	19.4%	15.8%	16.6%	6.0%	4.2%	13.2%

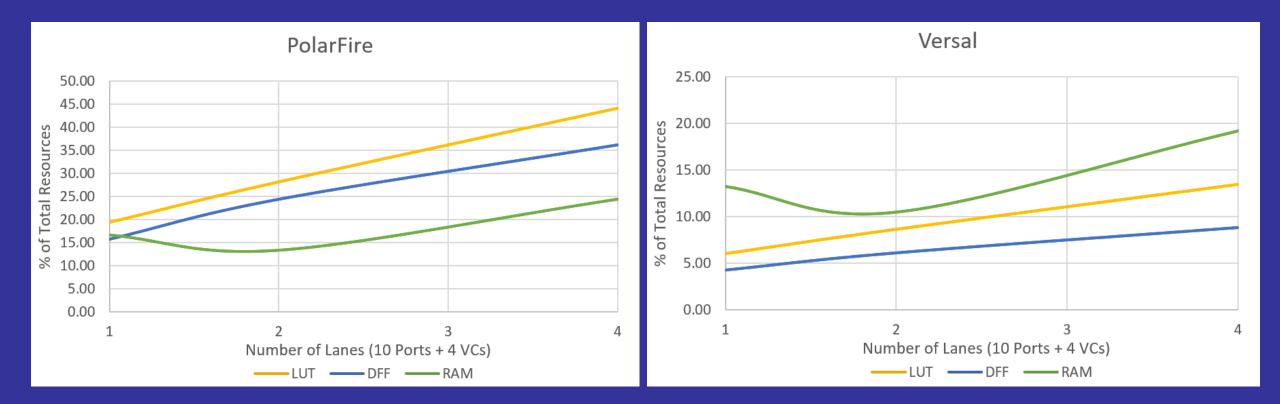
SpaceFibre Single-Lane Routing Switch IP Resources

- SpFi Interface IP Cores are <u>included</u>
- Additional Configuration port and RMAP target is also included
- Port count includes 1x internal AXI4-Stream (2 VCs) and 1x SpW ports

		RTG4		XQRKU060 *		
	LUT	DFF	LSRAM	LUT	DFF	RAMB36
6 Port	31782	27393	47	17984	28090	48
2 VCs	20.9%	18.0%	22.5%	5.4%	4.2%	4.4%
10 Port	98540	76035	127	55917	78051	128
4 VCs	64.9%	50.1%	60.8%	16.9%	11.8%	11.9%

	R	TPF500	*	XQRVC1902 *		
	LUT	DFF	LSRAM	LUT	DFF	RAMB36
6 Port	29938	26943	93	17098	27652	48
2 VCs	6.2%	5.6%	6.1%	1.9%	1.5%	5.0%
10 Port	93526	75905	253	53800	75867	128
4 VCs	19.4%	15.8%	16.6%	6.0%	4.2%	13.2%

- 6 Port 2 VCs \rightarrow 12 VCs
- 10 Port 4 VCs \rightarrow 36 VCs
- DFF/VC ~ 2200
- LUT4/VC ~ 2600 (RTG4/PF)
- LUT6/VC ~ 1500 (KUS/Versal)
- Easy way to have a ROM of a design from the number of VCs required



SpaceFibre Multi-Lane Routing Switch IP Core

Presentation coming next about this IP

SpaceFibre Multi-Lane Routing Switch IP Resources

 Values for different configurations (2/4 Lanes and 6 Ports/2 VCs or 10 Ports/4 VCs) available the paper

SpaceFibre Multi-Lane Routing Switch IP Resources

- Same number of VCs as before
 - 6 Port 2 VCs \rightarrow 12 VCs
 - 10 Port 4 VCs \rightarrow 36 VCs

- 1-lane Router
 - DFF/VC ~ 2200
 - LUT4/VC ~ 2600 (RTG4/PF)
 - LUT6/VC ~ 1500 (KUS/Versal)

- 2-lane Router
 - DFF/VC ~ 3500
 - LUT4/VC ~ 3900 (RTG4/PF)
 - LUT6/VC ~ 2200 (KUS/Versal)

- 4-lane Router
 - DFF/VC ~ 4500-5500
 - LUT4/VC ~ 6000 (RTG4/PF)
 - LUT6/VC ~ 3500 (KUS/Versal)

- STAR-Dundee provides SpaceFibre Interface and SpaceFibre Routing Switches IP Cores
 - Single-Lane and Multi-Lane *flavours* are both available

- The IPs have been designed specifically for space applications
 - Designed for the highest performance in RTG4 and other rad-had FPGAs
 - A simple SpFi interface only uses 2% of an RTG4 and $\leq 0.5\%$ of the other FPGAs analysed
 - Multi-Lane can be implemented using 4% of an RTG4 and \leq 1% of the other FPGAs
 - Exhaustive verification and validation, including radiation testing

Conclusions

The IPs are easy to implement

- IP Core can be used without knowledge of the internals of the SpaceFibre protocol
 - Very simple link management
 - Focus on how to process data, not on how it is transferred
- Does not require specific timing or placement constraints
- Reference designs available that show how to interconnect to different SerDes/Transceivers
- End-user support by the same team that designed the IP and contributed to the SpaceFibre standard

