PRECAST @GmbH

Portability, Reproducibility and Exception Handling of Control Software on
Host and Target Platforms

Contract No. 4000122343/17/NL/FE/as

Andoni Arregi

2018-12-1
TEC-ED & TEC-SW Final Presentation Day — ESTEC

GTD GmbH

Table of contents

1. Introduction

2. Motivation

3. Our Analysis

4. Conclusion

5. Guidelines and Recommendations

6. References

PRECAST 1

Introduction

Computers and Floating Point Arithmetic

- Computers are called that way because we expect them to be able to compute

- Floating-point arithmetic is a somewhat tricky model for real-number arithmetic
(see [2])

- One of the first floating-point arithmetics developed for the MANIAC and called
FLINT, had 40 bits precision in the 50s

- Now, over 60 years later, we have commonly only 64 bits precision

This makes exhaustive testing of numerical computing impossible to current computers
but does not provide enough accuracy to forget about accuracy problems.

Having reproducible numerical results enables inferring the correct behavior of a system
based on the known correct behavior of another one.

PRECAST

Computers and Floating Point Arithmetic

INF (0x7F800000)

“INF (OxFF800000)
128 1 2 1s 126 15 1s 124 123 128
OXFFFFFFFF ot 00000 2 2 2 2 2 Oand+0 2 2 2 2 2% orcooooe OXTFFFFFFE
‘ | I — ‘\\\\\\\‘HH\H‘ ‘\HHH‘\\\\\\\‘
I ‘ I ‘\\\\\\\‘HHH\‘ ‘HH\H‘\\\\\\\‘ I I
IN | J L \ A)
W T T !
QNN sNan NN qNaN
Negative Normal floating-point numbers Positive Normal floating:point numbers

Negative Subnormal _Positive Subnormal
floating-point numbers floating-point numbers

. 1 . . .
The rational number — = 0.1 has no exact representation in floating-point (no, not even

in 64 bits)

32 bits float:
64 bits double:

0x3DCCCCCC 9.99999940395355224609375E-2
0x3FB999999999999A 1.00000000000000005551115E-1

PRECAST

Computers and Floating Point Arithmetic

Some curios non-intuitive phenomena affects the computation with floating-point
numbers of which the software programmer shall be aware of, such as Rump’s example
(see the original article [5] and how to reproduce it on IEEE 754 arithmetic in [4]):

f=(333.75 — a®)b® + a*(11a*b* — 121b* — 2) + 5.5b% + 2%

a = 77617

b = 33096

32 bits evaluation f = 1.172604

64 bits evaluation f 1.1726039400531786

correct value f —0.82739605994682136814116509547982

PRECAST 4

Validation in Model Based Software Engineering

- Can we numerically validate the Model in a model-based software-engineering
workflow for GNC/AOCS software?

- Can we return to our simulation model once a numerical error is detected on-target
and reproduce it?

PRECAST 5

Validation in Model Based Software Engineering

Example Model Based SW Engineering approach based on Matlab/Simulink including MIL,
SIL, and PIL simulation modes (CED):

Develop and Simulate on Host PC

Matlab/Simulink Model Autogenerated Source
=T Emee 5 o
T = la ”
o -ode
o || = = ‘
e &=
MIL Simulation
o J
4
Host PC Embedded Target
P
-
[FEESX
SIL Simulation PIL Simulation

PRECAST 6

Validation in Model Based Software Engineering

No we Can’t

- Numerical behavior is not the same on host as on target
- Error condition handling is not the same on host as on target

Problem!

Numerical reproducibility issues between the host systems used for development
(normal PCs) and the embedded target systems (on-board processors) impede a proper
and early validation on host, as well as the investigation of problems observed during

AIT phases on target systems.

..but we use double precission!
...the differences are small
..we can neglect them

PRECAST

Motivation

Algorithms developed for space-software and especially for GNC/AOCS systems base on
numerical computations including among others:

- Elementary mathematical functions (trigonometric functions, logarithms,
exponentials, &c)
- Other arithmetic/algebraic operations:

- Matrix multiplications (based on the dot product operation)
- Matrix inversions

- Linear system solving

- &C

PRECAST 8

Standards such as

- the IEEE-754 Floating-point arithmetic standard,
- the ISO C programming language standard, and
- the POSIX standard

clarify numerical and error condition behavior.

But the reproducibility problem throughout hardware/software development
environments s still not solved because of the common noncompliance to these
standards and opacity of the simulation tools used.

PRECAST 9

Common non-compliances of these standards are, among others,

- the lack of subnormal (@) floating-point support (e.g., GRFPU),
- the lack of Fused Multiply Add (@) operation support (e.g., SPARC V8), and
- compiler and tool-chain library non-compliances

But do we care?

Or is this only a theoretical kind of discussion...

PRECAST 10

Numerical error analysis is a difficult task for complex numerical computations:

PRECAST

- how can an accuracy requirement of having a relative error below 10~8 be reliably

validated?

- on which platforms?
- on which testing level? On unit tests only?
- against which reference? Matlab?

We should not be surprised if Computer Science students prefer a sliver under
the fingernail to compulsory study of Numerical Analysis. It's a horrible subject.

William Kahan, [3]

m

When using the MLFS mathematical library, which provides a subset of the mat.h C
functions and has been qualified in the previous project together with the PRECAST
guidelines we obtained the following numerical reproducibility results in the shown

simulation modes:
Standard MLFS
Matlab/Simulink MIL Matlab/Simulink MIL

—
—

Standard GNU glibc MLFS
Host PC SIL Host PC SIL
—
I

Standard Newlib MLFS

SPARC V8 Target PIL SPARC V8 Target PIL

PRECAST 12

Our Analysis

Our Analysis

We analyzed the following aspects regarding numerical and error condition handling
reproducibility:

PRECAST

- Implications of the use of Matlab/Simulink (normal, accelerator, rapid accelerator,

and SIL modes) and autocode generation

- Implications of the use of elementary mathematical functions (those provided by

math.h)

- Implications of the use of other arithmetic/algebraic operations (dot product, matrix

multiplication, &c)

- Implications of the differences in FPU architectures (e.g., availability of Fused

Multiply Add instructions, subnormal support, &c.)

13

Our Analysis

We analyzed the following aspects regarding numerical and error condition handling
reproducibility:

PRECAST

- Implications of the use of parallel/multicore computing and the use of GPUs (in

examples given by Intel the same binary can give different results even on the same
processor in successive runs [6])

- Implications of the used compilers and different tool-chains (GCC, Clang, Intel C

compiler)

- Implications of exception generation and NaN handling

14

Our Analysis

The goal of PRECAST is to produce guidelines which when applied yield reproducible
numerical results (to the last bit) on Model in the loop (MIL - host), Software in the loop
(SIL - host), and Processor in the loop (PIL - target) executions.

PRECAST 15

We defined an aperiodic iterative simulation model that is highly sensitive to input data.
An altered version of the Logistic Map:

Xn+1 = I - arcsin(sin(xy)) - (1 — arcsin(sin(x,)))

PRECAST 16

Our Analysis

This model was run in the following modes:

- Simulink normal, accelerator, and rapid accelerator modes.
- Simulink SIL mode (x86 host PC)
- PIL mode on a SPARC V8 LEON2 (GR-CPCI-AT697)

PRECAST 17

Our Analysis

Since a good deal of numerical discrepancies come from the elementary mathematical
functions used in the model, we modified the model substituting these elementary
mathematical functions by those provided in the qualified MLFS mathematical library:

H EE i
fen fen

For this purpose the Embedded Matlab approach or the Simulink S-Function approach

can be used.
This ensures that the same MLFS implementations of these functions will be used
throughout the different simulation modes (MIL, SIL, PIL).

PRECAST

Our Analysis

The following diagram shows an example of the numerical differences analysis done
between:

- Standard Simulink MIL (FDLIBM) vs. standard Simulink SIL (glibc) simulation (grey)
- Standard Simulink MIL (FDLIBM) vs. MLFS MIL (blue)

- MLFS MIL vs. MLFS SIL (yellow; no numerical difference)

*All MIL simulations done in normal mode.

PRECAST

19

Our Analysis

In addition, analysis has also been done on the EagleEye AOCS Simulink model.

- We analyzed which numerical computations are being used by this model

- Elementary mathematical functions provided by math.h
- Algebraic operations (e.g., matrix multiplications, linear system solving, matrix inversions,
&¢C.)

- We run sample tests of some of these numerical computations to assess the
implications of our study.

PRECAST 20

Our Analysis

Relation of MIL, SIL, and PIL executions regarding numerical results we obtained with
MLFS and the PRECAST guidelines:

Standard MLFS
Matlab/Simulink MIL Matlab/Simulink MIL

I
I

Standard GNU glibc MLFS
Host PC SIL Host PC SIL
I
I

Standard Newlib MLFS

!

SPARC V8 Target PIL SPARC V8 Target PIL

PRECAST 21

Our Analysis

Regarding error conditions handling we analyzed the following:

PRECAST

- How the MLFS library behaves regarding the floating-point exception generation

requirements of IEEE-754

- What the implications of the FPUs and the compiler tool-chains are
- How the NaN (gNaN and sNaN) generation and propagation/percolation behaves

22

Our Analysis

Our conclusions regarding error conditions handling are:

PRECAST

- The floating-point exceptions Invalid Operation, Overflow, and Divide by Zero should

be regarded as more important than Inexact and Underflow, as they represent
significant errors and thus, effort should be made to detect them.

- The MLFS library generates the important exceptions required by IEEE-754 for each

function

- For which input values the exceptions are generated differs from platform to

platform, because of the different compiler tool-chain and FPU behavior (e.g.,
because of unavailable subnormal support).

- The tool-chain behavior introduces differences in the exception behavior on

different platforms.

- NaNs can be effectively used for pre-initializing data to invalid values (sNaN) as well

as for the detection of invalid computations, via NaN propagation. But again care
must be taken, as some older compilers have bugs regarding this behavior (NaN
propagation through relational operators solved in GCC 81) 23

Conclusion

Conclusion

Numerical Reproducibility
It is not too difficult to get reproducible results on host and target systems to enable
the validation of numerical computations on model level but care has to be taken.

Error Condition Handling

- Focus shall be set on the important exceptions: Invalid Operation, Overflow, and
Divide by Zero
- Pre-initialize data to sNaN, so that uninitialized use can be detected via exception

- Frequently check for NaN values as the result of intermediate computations

PRECAST 24

Guidelines and
Recommendations

Guidelines and Recommendations

(1) Same Mathematical Library

Always use the same mathematical library for elementary mathematical functions (e.g.,
MLFS) on all systems (host and target)

To assure that the starting point of numerical and exception behavior will be the same on all those platforms (the compilation
and the hardware itself will still have an impact though, which we will try to solve with the following guidelines).

PRECAST 25

Guidelines and Recommendations

(2) Compilation Flags
Always compile using the -frounding-math -fsignaling-nans -fno-builtin
compiler options

To obtain an IEEE-754 compliant floating-point arithmetic behavior when using GCC, or the -fp-model strict -fp-model
source options when using the Intel C compiler. Clang does not support -frounding-math -fsignaling-nans.

PRECAST 26

Guidelines and Recommendations

(3) Configure FSR Register
Properly configure the FSR resister on SPARC V8 processors

31 30 29 28 27 26 25 24 23 22 . 0
| rd | -~ [nvm[ofm|ufm|dzm|nxm| ns |

- Always use round to nearest tie to even rounding mode (bits 30 and 31, rd, set to 0).

- Configure the FPU to trap on the important exceptions (Invalid Op, Div. by 0, and Overflow) while developing the software.
For LEON2, LEON3, and LEON4 processors see the FSR register bits below and set the corresponding bits to 1 (nvm to 1,
ofm to 1, and dzm to 1). The general trap enabling bit has also be set to 1 (PSR bit 5 to 1). For flight software the project
shall decide if trapping on the exceptions is desired or not and what the trap handler shall do.

- Set the nonstandard modus on processors using the GRFPU (bit 22, ns set to 1), since the processor will otherwise trap on
subnormal floating-point numbers. This modus will handle subnormals as 0, which is not IEEE-754 compliant but will not
trap (see [1]).

*on x86 systems, the MXCSR register will have to be set accordingly.

PRECAST 27

https://docs.roguewave.com/totalview/2018/html/index.html#page/Reference_Guides/Intelx86MXSCRRegister.html

Guidelines and Recommendations

(4) Save FPU Context
In case of using task preemption on RTEMS, make sure that the current floating-point
status is saved and restored during context switching

Set the RTEMS_FLOATING_POINT attribute flag when creating all RTEMS tasks with rtems_task_create().

PRECAST 28

Guidelines and Recommendations

(5) Disable Subnormal Support (In case of GRFPU)
Disable subnormal support in Matlab and Simulink setting the DAZ and FTZ modes

PRECAST 29

Guidelines and Recommendations

(6) Use MLFS S-Function Blocks in Simulink
Use the S-Function mechanism to use MLFS procedures within the Simulink MIL
simulation

PRECAST 30

Guidelines and Recommendations

(7) Disable Parallel Processing in Matlab
Limit the computational threads of Matlab and limit Matlab to use only one CPU core

PRECAST 31

Guidelines and Recommendations

(8) Don't use the 80 bit x87 FPU Registers
Always compile for SSE/AVX architecture on x86-64 platforms

e.g., using the flag -msse2 with GCC or Clang compilers, or -march=sse2 with the Intel C compiler. The use of the 80 bit x87
registers would produce a more accurate results, but the results will not be reproducible on a SPARC V8 architecture.

PRECAST 32

Guidelines and Recommendations

(9) Disable FMA Support
Always compile excluding FMA instructions on x86 platforms

Use the -no-fma compiler option (this is valid for GCC, Clang, and the Intel C compiler). The SPARC V8 architecture does not
support FMA either.

PRECAST 33

Guidelines and Recommendations

(10) Configure IEEE-754 compatibility for CUDA
Configure the CUDA compiler flags for IEEE-754 support

- -ftz=false: use subnormal floating-point numbers (do not flush them to zero)
- -prec-div=true: compute division to the nearest floating-point number
+ -prec-sqrt=true: compute square root to the nearest floating-point number

- -fmad=false: do not merge multiply and add operations

*If subnormal support is not desired, as for the GRFPU, set -ftz=true

PRECAST 34

References

References i

Cobham-Gaisler.
Handling denormalized numbers with the grfpu, 2015.

D. Goldberg.
What every computer scientist should know about floating-point arithmetic, 1991.

W. Kahan.

Matlab’s loss is nobody’s gain, 1998.

E. Loh and G. Walster.
Rump’s example revisited.
In Reliable Computing, volume 8, pages 245-248. 01 2002.

PRECAST

References ii

PRECAST

S. M. Rump.

Reliability in computing: The role of interval methods in scientific computing.
chapter Algorithms for Verified Inclusions: Theory and Practice, pages 109-126.
Academic Press Professional, Inc., San Diego, CA, USA, 1988.

G. Zitzlsberger.
Fp accuracy & reproducibility; intel c++/fortran compiler, intel math kernel library,
and intel threading building blocks, September 2014.

Additional Notes

Subnormal Floating-Point Numbers

There is a special subset of floating-point numbers called Subnormals, representing very
small numbers. These numbers have less precision that the rest of the floating-point

numbers. Their range being (only shown for positive numbers, for negative ones the
symmetrical ranges apply):

Double: 271074 271022) ~ [4.94066 - 10732, 2.22507 - 10~3%8)
Float: [2749,27126) & [1.40130 - 107%°,1.17549 - 10~38)

PRECAST

Simulation Modes

Some short notes on the different existing simulation modes and their relation to
Matlab/Simulink:

PRECAST

- MIL: Model In the Loop simulation. E.g, a native Simulink simulation, run in normal

mode within the Simulink environment, where our model is being computed by the
Simulink engine.

- SIL: Software In the Loop simulation. Here we mean a simulation where source code

has been auto-generated from our model, compiled with a compiler tool-chain
available on the host PC to a standalone executable, and run on that host PC without
any Simulink dependency.

- PIL: Processor In the Loop execution. Here we mean a run, where source code has

been auto-generated from our model, cross-compiled for the embedded target
processor, and run on that target.

Simulink Simulation Modes

Selection in Simulink of the different available modes:

Normal

Analysis Code Tools Help

Accelerator

@ n - |432359 | P._:apid 2 tor @ -
Software-in-the-Loop (SIL) J—

| =

Processor-in-the-Loop (PIL)
External
‘@ G) > = [(482069 | [Normal -]
‘@ 4 @ » = V |482069 | |Accelerator - | ‘
‘@ " V | 482069 | | Rapid Accelerator - | ‘
‘ @ ™ ~ 482069 | | software-in-the-Loop (SIL) | ‘
PRECAST

Simulink Simulation Modes

Note on Matlab/Simulink simulation modes:

- Normal mode: The Matlab computing environment is used. The math library is
based on FDLIBM and BLAS/LAPACK are used for algebraic operations.

- Accelerator Mode

- Default accelerator mode: No compiler needed. An acceleration target code is generated
for the Simulink model and kept in memory. Further concrete implementation aspects
are unknown but this seems to be a pure MIL simulation based on the same Matlab
computing environment as for the normal mode.

- Classic accelerator mode: Compiler needed. C code is generated for the Simulink model
and linked into a shared library. The Matlab own RTW (Real Time Workshop) libraries are
used thus, the math library used is still the Matlab internal one based on FDLIBM and
BLAS/LAPACK for algebraic operations.
set_param(0, 'GlobalUseClassicAccelMode', 'on');

PRECAST

https://de.mathworks.com/help/simulink/ug/how-the-acceleration-modes-work.html

Simulink Simulaton Modes

Note on Matlab/Simulink simulation modes:

- Rapid accelerator mode: Compiler needed. C code is generated for the Simulink
model and the solver, producing a standalone executable. The Matlab own RTW
libraries are used thus, the math library used is still the Matlab internal one based
on FDLIBM.

- SIL mode: Compiler needed. C code is generated and a standalone executable is
produced. The libraries available to the system compiler tool-chain are used (e.g.,
glibc) thus, the math library used is a different one than the Matlab internal one.
(the scope functionality is not available in this mode)

PRECAST

https://de.mathworks.com/help/simulink/ug/how-the-acceleration-modes-work.html

Fused Multiply Add Operation

A FMA operation represents the following arithmetic operation on three operands:

fma(x,y,z) =xxy+2z

with a single rounding after the addition and not once for the multiplication and once for
the addition as if performed in two separate operations. This is a required arithmetic
operation of the IEEE-754 standard since its 2008 version.

FMA availability

Since about mid 2013 x86 Intel and AMD procesors (Intel Haswell and AMD Bulldozer)
have this operation, Newer ARM processors (ARM v8) also have it but SPARC V8
processors (LEON2, LEON3, and LEON4) do not provide it!

PRECAST

	Introduction
	Motivation
	Our Analysis
	Conclusion
	Guidelines and Recommendations
	References
	Appendix
	Additional Notes

