AdaCore

@ KRATES QGen

inseneriburoo - engineering bureau

Qualifiable code
generation backend
for TASTE

ESA Contract No. 4000118510/16/NL/CBi
IB Krates OU, Estonia

Andres Toom
IB Krates OU / AdaCore Estonia OU

TEC-ED & TEC-SW Final Presentation Day
11 December 2018 ESA/ESTEC

Outline

Introduction

o Project team
o Background technologies
o Objectives

Code generation

o SDL to C / Ada (SPARK)
o VDM-SL to Ada (SPARK)
o SDL + VDM-SL to C / Ada (SPARK)

Design by Contract workflows
TASTE / AADL and Simulink Round-Trip
QGen / SSI roadmap

Introduction

Project team

e Contractor IB Krates OU

o An Estonian systems integration and software development SME.

o In close collaboration with AdaCore, leading vendor of Ada compiler and development tools.

o Together created the QGen open source qualifiable code generator for embedded high-
integrity and safety-critical domains.

o ESA project (2014-2015): Integrating the QGen (GMS-P) Automatic Code Generator with the
Space Component Model (Integrating QGen in TASTE).

e AdaCore Estonia OU

o In 2018 the code generation product line was acquired by AdaCore and a new entity Estonia
OU was created for strengthening the QGen-related developments.

Background

e Follow up of the ESA-PECS project

o Integrating QGen (GMS-P) with the Space Component Model (SCM)
o Provided integration of the QGen code generator into the AADL-Simulink workflow of TASTE

e Existing technologies and tools
o Component-based modelling (TASTE toolset)
o Architectural modelling (AADL, ASN.1, ...)
o Functional modelling (Simulink, SDL, ...)
o Code generators (Ocarina, Simulink Coder, QGen, ...)
o Explicitly coded components (C, Ada, ...)
o ITU Specification and Description Language (SDL)
o OpenGEQODE tool
o Vienna Development Method (VDM)
o Overture tool

e \What is added
o QGen for code generation from SDL and VDM-SL
o Additional component-based modelling workflows using the above

What is QGen? (1/2)

Integrated Model-Based

Trusted Code Generator Model Verifier

Development Toolset
From Simulink® & Formal static model verifier for * Model-level debugger
Stateflow® runtime errors and functional
to Ada SPARK (Ada subset) properties » Processor-In-the-Loop testing
or MISRA C

Aiming for DO-178C

Customizable code at Tool Qualification Level 5
generation

Qualification for DO-178C
at Tool Qualification Level 1
ongoing

Consistency of the
generated code and the

What is QGen? (2/2)

An open and extensible framework

Access to intermediate representations

SoLlce,

P rdhdgj# : Dgglirqddt : H (W fw : Frgh
vwdggduy . yhulilf dwir . wifhde B .
fkhfnly : q : gawd

Towhj uixqu#z Tk# M Sufhvvru

P dnhilh

S g fxvwep Jjdvir

ol

XP OV |vP o211l

"The gcc for modeling languages™

Designed to accept multiple languages in input/output, including in-house DSLs
A single code generation style/strategy for all of your modeling languages
XMI-based model import/export at different abstraction levels

QGen Debugger — Unique Model Debugging
Capability

Bridge the gap between control
engineering and software engineering

Integrate code generated from Simulink
models with code written manually

Analyse model behavior by stepping
through source code

Display side-by-side synchronized view
of Model, Source Code and Object
Code

Execute code on Host, Local Emulator
or even your Embedded Target

Currently, limited Stateflow support
(planned for 2019)

0.0

0.0

-
o >] J. Rssembly
Produc LR
3.50e-01 e
3.60e400 . X = 0.0 'E
‘onstant GearRatio

o
3.42e+00
Product1

7.00e-01

e_outd) < ((ag
Voutd := (age

1outl := Stat.

Saturation 1 .

outl = qgen_ L

cancrament | 56-5-566:01 i —2.13¢+01 .

54

5.56e-01 2.13e+01

2.08e+01 o
gen. b *00,02e4+0 2.02e+01 +eMergei2.08e+01+ ~i-2.08e+01~ 1
= agen_base wo e

J]
3.2.08e+01M iy | 2.08e+01 2.08e+01)
3

ke 2oserer T o

ftes0l

v =24 L oala

State. Switen_3_sutt

(throttlcs. ... brakes.... target_velscitys.... velocitys ta output
Fhose/eivieriworkiogen.deso.sutonstive/satety systeasre/<or systea/penerated/

Display signal values dynamically
- Examine values in Variables view
Set persistent values
Log values to file

en Debugger Features

Action

utl, State.Brake outl, State.Mer
3ing project

velocity outl, State.Velocity ou ew: car,systam. xenl

car_system
for car_systom.xmi

= i-00 30 +

1 break keep car_system.adb
2 (o break keep control t

3 (G break keep controlied

4 o break keep controled_inputadh 23

0x08007382
0x08007388
0x08007382
0x0800738¢
0x0800738¢
0408007390
0x08007392
0x08007304
0x08007398
0x08007392
0x0800739¢
0x0800739¢
0x08007320
0x080073a2
0x08007328
0x08007326
0x080073a8
0408007332
0x080073aC
0x080073a¢
0x08007362
0x080073b4

Memory
m.comp a-
put up
X » 3 sram123
controlied_input initstates » @ fash
. am

Insert breakpoints on blocks or model

references
Blocks highlighting

Easily switch between code and model or debug

side-by-side

contr
contr.
contr
contr
contr.

SPARK 2014

A programming language that includes a
specification language

» Specification and implementation defined for each
program module — in the same language.

* Answers specific problems for embedded systems
developers

* closes gap between formal specifications and code

» fewer coding errors

* Program your specification and your proofs!

Programming
Language

HIGH
RELIABILITY

Design Verification
Method Toolset

Practical Application of Formal Methods
with SPARK

Toward implementation guidance

Platinum: Full functional
requirements

Only for a subset of the code subject to specific key

Effort integrity properties (functional,safety, security)

&
Skills Silver: Runtime T The default target for critical software

& CWE

Bronze: Flow co‘ For the _Iargest part of the code as
- possible
0 2 o '_‘;‘.“"' _"_‘:—" t '_‘.' '_: . '.‘-’.-',.-""'L.'-_ = ,":. I o ‘,,';"‘.' \ '
: g esub t-- :r - “"'; o

(subject to costs and limitations)

QGen for TASTE & Simulink

e ESA-PECS Project (IB Krates, 2013-2015)

o "Integrating the QGen Automatic Code Generator with the Space Component Model"
o Improved code generation from Simulink®/Stateflow® in TASTE

o Code generation driven by a single build script, less manual steps, fully repeatable

o Direct use of native data types defined in ASN.1

o Less buffers required. Cleaner glue code

o Code generation with formal verification support

o CodePeer and SPARK integration

o Dedicated support for on-target regression testing

o Comparison against stored simulation results. No need for external 10 or software

o Comparative study of the DO-178C and ECSS based qualification

@ KRATES

inseneriburoo - engineerin g bureau

Objectives of the Current Project

e O1 (Main objective)
o Provide a universal and qualifiable code generation backend for the two main models for behavioural
specifications in TASTE: SDL and VDM based on the QGen toolset.

e O2 (Supports O1)
o Support the simulation and debugging of SDL + VDM-SL models from the TASTE/OpenGEODE
environment based on the QGen code generation backend.

e O3 (Extends O1)

o Develop an approach for specifying high-level formal properties (contracts) for a component in VDM

o transforming and propagating those contracts to detailed design models (e.g. Simulink) and/or
generated program code (e.g. SPARK Ada).

o using these contracts for automatic consistency checking between the high-level specification, design
and implementation.

e O4 (General enhancement)

o Improve the mapping between architectural model in AADL and architecture elements expressed in
Simulink models.

e O5 (Validation and verification)

Code Generation from SDL

SDL - Specification and Description Language

e |TU-T standardised (Z.100 .. Z.106) formal language for the specification of the
behaviour of reactive systems, such as real-time systems

e Complete and unambiguous formal semantics making it suitable for high-level
design as well as low-level design and automatic code generation

e Supports the ASN.1 language for the specification of datatypes

e Tools

o PragmaDev Studio (RTDS) -- Commercial
o OpenGEQDE -- Open Source. Integrated in TASTE

Code generation from SDL with QGen

e Ada and C code generation from a subset of SDL (with ASN.1 datatypes)

e Pivot language: Extended Gene-Auto/QGen metamodel (Ecore)
o Allows for standardised XMI-based model exchange with external tools

Stage 2 — QGen executable (qgenc)

VDM

|:> Pre-

processor
SDL Ada
D - O Printer
Sumulmk Dalaﬁow Code
Sq el D Simplifier | > Expander |:> C Printer
ocessn
Block lerary

-I QGen/Gene-Auto Metamodel API (Automatlcally Generated)

Ja a Generic Core MOF API (Manually Written)
/
Ada Ada

QGen SDL Converter — Frontend (Java)

® st stage: ANTLR 4-based importer
o SDL importer is based on the OpenGEODE ANTLR grammar (sdl92.9)
o ASN.1 data definitions are imported based on the XML data structure produced by the
ASN1SCC tool
® 2nd stage: the ANTLR tree is converted to the Gene-Auto/QGen Ecore metamodel.
o Uses an Eclipse Modeling Framework (EMF) provided core features.
o Model is serialized as an XMI file

QGen SDL Converter — Backend (Ada)

e Code generation with QGenc
o Input: Model XMl
Some preprocessing of SDL models to be structurally closer to Stateflow models
Type inference extensions for sequence types, octet types
Backend support for SDL operators/functions: append, length, write, writeln
Improved support for custom types and slice operations
New expansion and postprocessing steps. Mainly related to sequences
Output: Ada or C code

o O O O O O

SDL Features and Limitations

e Supported features

O

Most of the features that are supported in OpenGEODE

e Unsupported features

(@)

O O O O

(@)

SDL type (process) instances, processes with formal parameters
Use clauses to non-ASN.1 external modules

Parameterized ASN.1 types, IA5String ASN.1 type

Continuous signals with explicit priority value

Informal text

Non-deterministic choice (any)

e Other limitations

(@)

The same variable cannot be passed simultaneously to an in and out/in-out parameter or multiple
out/in-out parameters when Ada code is generated

ASN.1 set type definition is supported, but the ASN1SCC set implementation is not (Ada Functional
Sets are supported instead)

QGen does not detect all the same errors as OpenGEODE does. It is assumed that the model was
checked before the code generation step.

Case Study 1 - TUT Nanosatellite Case Study

e Tallinn University of Technology (TUT) Nanosatellite project.

O

O

O

e Results

O O O

@)

TCTM protocol for ground — satellite communication
Based on AX.25 (amateur radio)
Modeled by the master student Dan Rodionov

Ada code was generated using OpenGEODE
C and Ada code was generated with QGen
Functional verification of the generated code wrt. OpenGEODE simulation
Some model-level issues were detected during the process and fixed

m E.g. missing initialization of local and out variables
ldentical behaviour between OpenGEODE and QGen generated code was achieved after that
The performance of QGen generated code was somewhat lower from OpenGEODE's

Case Study 2 - OpenGEODE Regression Testsuite

e Case study 1 (TUT Nanosat) fully supported

e Case study 2 (OpenGeode regression testsuite)

o Ada code generation: 71% passes OpenGEODE testsuite
o C code generation: 64% passes OpenGEODE testsuite

Code Generation from VDM-SL

VDM - Vienna Development Method

e VDM is a formal method that has a long history for the development of

computer-based systems.
o The specification of the first PL/1 and Ada compilers

e |SO standardized syntax and semantics.

e The core concepts of VDM are formalised in the VDM Specification Language
(VDM-SL) and extended by object-oriented features in VDM++ and real-time
concepts in VDM-RT.

e The VDM-SL language features include the specification of
O Data types, functions and operations on data
o Powerful and easy to use collections (sets, sequences, mappings)
O Functions and operations can be defined implicitly through contracts and/or explicitly

e Tools: VDMTools (commercial), Overture (open source).
e VDM is one of the functional languages supported by TASTE.

Code generation from VDM-SL with QGen

e Ada SPARK code generation from a subset of VDM-SL
(with VDM-SL native and ASN.1 datatypes)

e Pivot language: Extended Gene-Auto/QGen metamodel (Ecore)
o Allows for standardised XMI-based model exchange with external tools

Stage 2 — QGen executable (qgenc)

-I QGen/Gene-Auto Metamodel APl (Automatically Generated)

Generic Core MOF API (Manually Written)
Ada Ada

VDM-SL to SPARK Converter — Frontend (Java)

e Relies heavily on the Overture toolset

e Imports information from the intermediate Abstract Syntax Tree (AST)

e Uses the AST visitor pattern provided by Overture for creating QGen/Gene-
Auto metamodel objects

e The QGen/Gene-Auto model is serialized to an XMl file

VDM-SL to SPARK Converter — Backend (Ada)

Input: (Code Model) XMl

Preprocessing of VDM-SL models

Generic code model expansion and post-processing
Output: Ada SPARK code

Code Generation from VDM-SL

e Code generator implemented

o Case study 1: (finnuc) supported

o Case study 2: (AlarmSL) supported with reduced model
Sequence definitions must be given in ASN.1

Record pattern matching is not supported (can be avoided)
m Implicit functions are not supported

m [ype invariants are not generated
e Supported features (next slide)

(1/2)

Code Generation from VDM-SL

e Supported VDM-SL features

O

o 0O o O o o 0O o o o o

Basic VDM-SL types: real, int, nat, nat1, bool. Composite types (records)
Unions of quote types (enumerations)

ASN.1 type definitions for the same subset

Token types with literal values.

Flat and multi-module specifications

*

Most common unary and binary operations: +, -, *, ...

State and value definitions

Assignments, Let statements

Operations and explicit function definitions

Pre- and postconditions

Map and Set types. Based on Ada Functional Containers. Most operators supported
Sequence types. Based on ASN.1 / ASN1SCC. Limited support

(2/2)

Code Generation from SDL + VDM-SL

Code Generation from SDL + VDM-SL

In the TASTE modelling philosophy it is possible to create heterogeneous models that has
components implemented in SDL and other languages that provide a certain C language interface
for binding the respective Provided and Required Interfaces (PI/RI) of the components.

The VDM2SPARK code generator supports this pattern.

To ensure that the data types at the interfaces are compatible they must be defined using a common
ASN.1 specification for both models.

When the switch --taste-interface is passed to the VDM2SPARK tool, then all the formal parameters
of Ada functions or procedures generated from VDM-SL operations (but not from functions) have an
additional export with C conventions pragma and the argument passing mode will be changed from
IN to IN OUT.

This effectively means that values can be passed to these subroutines by reference (pointer)
removing memory overhead that would be otherwise caused by interfacing.

The C name of the subroutine will have an additional prefix “Pl_" due to comply with the TASTE
naming conventions (Pl - Provided Interface).

The function names don’t have to be compatible. It is possible to use lightweight glue code for
binding the interfaces.

Code Generation from SDL + VDM-SL

ASN.1 definitions must be converted to VDM-SL

File DataView.asn

TASTE-BasicTypes DEFINITIONS ::=

BEGIN

T-UInt32 ::= INTEGER (0..4294967295)

TASTE-Peek-id ::= INTEGER (0..4294967295)
FixedintList ::= SEQUENCE (SIZE(3)) OF TASTE-Peek-id
MyEnum ::= ENUMERATED {one, two, three, four, five}

MySimpleSeq ::= SEQUENCE { a INTEGER (0..255), b BOOLEAN, c MyEnum }

END

File dataview.vdmsl
module TASTE_BasicTypes
exports all
definitions
types

TASTE_Peek_id = int

invx==

x >= 0 and x <= 4294967295

FixedIntList = seq of TASTE_Peek_id
invx==
lenx = 3;

MyEnum = <one> | <two> | <three> | <four> | <five>;

MySimpleSeq_a = int
invx==
X >= 0 and x <= 255;
MySimpleSeq :
a: MySimpleSeq_a
b : bool
¢ : MyEnum
inv mk_MySimpleSeq(a, b, ¢) ==
a>=0and a <= 255;

values

end TASTE_BasicTypes

S asnl.exe -customStgAstVersion 4 -customStg vdmsl.stg:dataview.vdmsl DataView.asnl

Example

Code Generation from SDL + VDM-SL

e An example VDM-SL specification that uses these types

File compute.vdmsl

module Compute
imports from TASTE_BasicTypes all, from 10 all
exports all
operations
VDM : TASTE_BasicTypes FixedIntList ==> TASTE_BasicTypes FixedIntList
VDM (inp)
== return inp;

VDM2 : TASTE_BasicTypes TASTE_Peek_id ==> TASTE_BasicTypes MySimpleSeq
VDM2 (inp)
== return mk_TASTE_BasicTypes 'MySimpleSeq(inp, false, <two>)
pre inp >=0 and inp <= 255
post RESULT.a > 0;

Run : TASTE_BasicTypes TASTE_Peek_id ==> ()
Run (x) ==
(

10 printin("VDM Run: Started");

10 print("Calling vdm2 with arg);
10 printin(x);

10°printin(VDM2(x));

10 printin("VDM Run: Ended");

)i

end Compute

(Example)

Code Generation from SDL + VDM-SL

e Generated Ada SPARK specification

Generated compute.ads (with DataView.asn and --taste-interface)

with adaasnlrtl; use adaasnirtl;
with TASTE_BasicTypes; use TASTE_BasicTypes;
with Interfaces; use Interfaces;

package Compute is

function VDM
(inp : in out asnl1SccFixedIntList)
return asnlSccFixedIntList;
pragma Export (C, VDM, "PI_VDM");

function VDM2
(inp : in out asn1SccTASTE_Peek_id)
return asnlSccMySimpleSeq

with

Pre =>

(((inp) >= (0)) and then ((inp) <= (255))),

Post =>

((VDM2'Result.a) > (0));

pragma Export (C, VDM2, "PI_VDM2");

procedure Run (x : in out asn1SccTASTE_Peek_id,;
pragma Export (C, Run, "Pl_Run");

end Compute;

Example

Code Generation from SDL + VDM-SL

SDL model

dcl fixed fixedintList :={ 1,2,3};
dcl fixedRes fixedintList;

dcl simpleseq MySimpleSeq := {3 42, b true, ¢ three};

procedure VDM;
fpar in inp fixedintList;
returns fixedintList
external;

procedure VDM2;
Fparin inp TASTE_Peek_id;
returns MySimpleSeq
external;

H writeln('Simulation startup') ||

write('Calling VDM with data’)

for each in fixed: call write(each, ' '); endfor

[|

fixedRes := vdm(fixed)

I write('Result:") I

For each in fixedRes: call write(each, ' '); endFfor

[]

| | writeln('Before:', simpleseq!a, ' ', simpleseq!b, ' ', simpleseq!c) l |
[

| | writeln('Calling VDM2 with value', fixed(0)) I]

[simpleseq := vdm2(fixed(0)) J
[

H writeln('Result:’, simpleseq!a, ' ', simpleseq!b, "', simpleseq!c) ‘ |

Example

Code Generation from SDL + VDM-SL (Example)

e The following simple glue code in the C language is used to combine the code generated from SDL
and VDM-SL models

glue.h glue.c
I* Glue code for binding code generated from SDL, VDM-SL and ASN.1 */ /* Glue code for binding code generated from SDL, VDM-SL and ASN.1 */

#fndef GLUE_H #include "glue.h"

#define GLUE_H

/* Definitions of local functions */

asnlSccFixedIntList VDM (asnlSccFixedIntList* constinp) {
return PI_VDM(inp);

}

/* Data type definitions generated by ASN1SCC */
#include "dataview-uniqg.h"

/* External functions */

/* Exported from the VDM-SL model compute.vdmsl| */

I* Generated by vdm2spark (Ada SPARK code with C interface) */
extern asnlSccFixedintList Pl_VDM (asnl1SccFixedIntList* const inp);
extern asn1SccMySimpleSeq Pl_VDM2 (asn1SccT_UInt32* const inp); }

asnl1SccMySimpleSeq VDM2 (asn1SccT_UInt32* const inp) {
return PI_VDM2(inp);

* Prototypes of local functions */

/* Imported by the SDL model orchestrator.pr */

/* The code from the SDL model is senerated by qgen-sdl
(Ada SPARK code with C interface) */

asnlSccFixedintList VDM (asnlSccFixedIntList* const inp);

asn1SccMySimpleSeq VDM2 (asn1SccT_UInt32* const inp);

#endif

Simulation and Debugging Support

QGen backend for simulation and debugging

e The scope of this objective was reduced

e |t is currently possible to launch QGen via OpenGEODE for code generation
from SDL models

e The interface for reading/writing run-time values from OpenGEQODE is
implemented

e The interface for reading/writing the chart state from OpenGEODE is not yet
implemented

Design by Contract Workflows

Transformation of VDM-SL contracts for consistency
verification (1/3)

e The Design-by-Contract (DbC) is a well-known paradigm and methodology.
e Now emerging also in MBSE - specify and verify contracts at the model level.
e A variant of the DbC is proposed using VDM-SL and Simulink.

Potentially, also AADL (TASTE).
e Potential use cases:

o Algorithm design is performed in Simulink. This may be practical for instance in control applications
where one can benefit from dedicated blocks such as Integrators, Lookup tables etc.

o The creation of test data. Simulink is a handy tool for composing and visualizing varions test vectors
and comparing the outputs provided by designed subsystem with expected ones.

o Verification and validation using the Simulink, QGen or SPARK toolsets.

e A more general parallel QGen-related initiative is Software-to-System Integrity.
(SSI) — translation and verification of SysML models with formal contracts.

Transformation of VDM-SL contracts for consistency
verification (2/3)

Simple system Complex system 10 contracts

Requirements
(High-level
Model)

VDM-SL VDM-SL VDM-SL
specification specification invariants

é‘ @ (unchanged) =9
Architectural

o VDM-SL
decomposition .
(optional) invariants

transformed

i
Simulink Simulink
model contracts

|
I
|
{

* transformed =

Ada
code

Consistency verification

Consistency verification

Transformation of VDM-SL contracts for consistency
verification (3/3)

e VDM-SL to Ada SPARK

o Core functionality:

m VDM-SL preconditions and postconditions would be translated to Ada preconditions and
postconditions

m VDM-SL invariants can be translated to Ada type invariants or assertions (not yet implemented)
e Extension to Simulink

o From a VDM-SL model generate a skeleton of a Simulink model with contracts on 10
o Contracts are implemented as Ada-based S-function (executable black box) blocks
o The VDM-SL model can modified and the S-function blocks regenerated

e Possible future extension to AADL (and TASTE)

o The VDM-SL contracts for the components' 10 are embedded as AADL properties in the AADL model
o Semantic verification of the contracts performed either at Simulink or code level.
o (Ongoing work in the scope of the QGen Software-to-System Integrity (SSI) initiative)

Expressing contracts in Simulink

e Contracts for Simulink to SPARK conversion

o Contracts are encapsulated in subsystems (further referred as observer subsystems) and explicitly
marked with mask type QGenContract. Such an observer can be attached to any signal in model.

|Palfinnuc_lib P (Pa| srFlipFlop

srFlipFlop

Model

VDM-SL to Simulink Mapping (1/3)

e VDM-SL module

o Module with name <modulename> shall be converted to Simulink libraries as follows:
m Specification library named <modulename>_lib. This library always exists
m Implementation library named <modulename>_impl_lib. This library is generated only when there
are any functions or operations with explicit body.

e Types
o Shall be converted to datatype definitions according to the VDM-SL to Ada SPARK mappings and
made available to Simulink as matlab script <modulename>.m

VDM-SL to Simulink Mapping (2/3)

e Functions/operations

o Each function or operation (sub-program) named <fname> shall be converted to:
m A SPARK function or procedure <fname> in case the sub-program has an explicit body
m An S-function block <fname> allowing to invoke the generated SPARK sub-program from Simulink,
stored in the Implementation library.
m A Simulink model <fname> containing
e Input ports corresponding to the sub-program input arguments,
e Output port corresponding to the return value
e Output ports corresponding to output arguments (if any)
m Reference block pointing to the <fname> S-function in the implementation library
Subsystem <fname> in the specification library containing
m Input ports corresponding to the sub-program input arguments,
m Output port corresponding to the return value
m Output ports corresponding to output arguments (if any)
m ModelReference block pointing to the <fname> model
m Subsystems corresponding to pre-and postconditions

VDM-SL to Simulink Mapping (3/3)

e Pre- and postconditions
o Each pre- and postcondition in VDM shall be converted to an observer block in the Specification
library
m The name of the observer shall be <fname>_obs[pre|_post]
m Type of the observer shall be defined by mask type either QGenPrecondition or
QGen_Postcondition
m The original VDM text shall be stored in mask parameter QGenContractVDM
m Generated SPARK code shall be stored in mask parameter QGenContractSPARK
m Subsystem shall have an input port for each variable the contract used
m It shall contain an S-function executing the generated SPARK code and returning true/false to an
Assertion block.
o In case a function does not have postcondition, but has explicit definition the explicit definition shall be
used for postcondition. The simulink structured shall be generated as above, except that
m The executed S-function is the one generated in the implementation library
m Output of the S-function shall be compared with output of the subsystem where postcondition is
applied and this comparison attached to the Assert block

Case Study: Mutually Exclusive State Switches

e \We use a simple model from [1] implementing two subsystems with mutually
exclusive states.

e The paper presents number of contracts on the specification and shows, that
the given design violates one of the requirements.

e Here we

o model the same specification in VDM-SL
o perform simulation in Simulink demonstrating the violation of the contract
o and also prove the violation using GNATProve

[1] Pakonen, A; Tahvonen, T; Hartikainen, M; Pihlanko, M, “Practical applications of model checking in the Finnish nuclear
industry”, Proceedings of the 10th International Topical Meeting on Nuclear Plant Instrumentation, Control and Human
Machine Interface Technologies, NPIC & HMIT 2017, 11 - 15 June, 2017, San Francisco, CA, USA.

Case Study: Mutually Exclusive State Switches

e The original model from [1]

Selection logic for b

Loop breaker
(cycle delay)

se)
Reset S¢ "—,

priority
flip-flop
switch

Reset
priority
flip-flop

switch

[1] Pakonen, A; Tahvonen, T; Hartikainen, M; Pihlanko, M, “Practical applications of model checking in the Finnish nuclear
industry”, Proceedings of the 10th International Topical Meeting on Nuclear Plant Instrumentation, Control and Human
Machine Interface Technologies, NPIC & HMIT 2017, 11 - 15 June, 2017, San Francisco, CA, USA.

Case Study: Mutually Exclusive State Switches

r1: “The set_a command shall lead to a, if b is not already selected”,
or as a formal LTL property p1: G((set_a A 7b) — a).

r2: “The set_a command shall reset b, if ¢ is not active”,
or p2: G((set_a A 7c) — b).

r3: “The set_ b command shall lead to b and reset a, if set_a is not active’,
or p3: G((set_b A 7set_a) — (b A a)).

r4: “If a has been selected, the signal ¢ shall change the selection to b”,
or p4: G((YaAnc)— Db).

r5: “Only one mode (a or b) shall be active at the same time”,
or p5: G(7(a A b))

[1] Pakonen, A; Tahvonen, T; Hartikainen, M; Pihlanko, M, “Practical applications of model checking in the Finnish nuclear
industry”, Proceedings of the 10th International Topical Meeting on Nuclear Plant Instrumentation, Control and Human
Machine Interface Technologies, NPIC & HMIT 2017, 11 - 15 June, 2017, San Francisco, CA, USA.

Case Study: Mutually Exclusive State Switches

e \VDM-SL specification for the state and types

state SetABState of

mory of the flip-flop block in

ction logic of output A

selA#llpFlop : FFMem

y of the flip-flop block in
ction logic of output B

selBFllpFlop : FFMem

mory of the loop breaker

in

election logic of output B

selBHem : bool

make sure the outputs are
initially
init s == s = mk_SetABState (
mk_FFMem (true, false),
mk_FFMem (false, true),
true)
end

in opposite

states

types

datatype for

FFMem: :

q
qCompl

fliplop output

bool
bool;

datatypes outputs

(purely technical to name tuple elements

SelBRes
SelABRes

values

setB
b
a
b

bool
bool;
bool
bool;

and

memory

)

Case Study: Mutually Exclusive State Switches

e \VDM-SL specification for the elementary functions and operations

functions

srFlipFlop returns the new value of

flipflop memory based on Set, Reset and

- previous outputs
srFlipFlop : bool * bool * FFMem -> FFMem
srFlipFlop (S, R, mem) ==
if S then
(if not R then mk_FFMem (true, false)
else mk_FFMem (false, false))
else
(if not R then mem
else mk_FFMem (false, true));

operations

- procedure implementing selection logic for A
selectA : bool * bool ==> bool
selectA (setA, resetA) ==

selAFlipFlop := srFlipFlop (setA, resetA, selAFlipFlop);
return selAFlipFlop.q;
);

- procedure implementing selection logic for B
selectB : bool * bool * bool ==> SelBRes
selectB (setB, resetB, C) ==

(

let s = setB or (selBMem and C) in
(selBFlipFlop := srFlipFlop
(s, not C and resetB, selBFlipFlop);
return mk_SelBRes(s, selBFlipFlop.q);

Case Study: Mutually Exclusive State Switches

e \VDM-SL specification for the integral logic

-- procedure implementig the integral logic
selectAB : bool * bool * bool ==> SelABRes
selectAB (setA, setB, C) ==

(

let selB = selectB (setB, setA, C) in

selBMem := selectA (setA, selB.setB);
return mk_SelABRes (selBMem, selB.b);
)
)
post
(
R1
(setA and not RESULT.b => RESULT.a) and
-- R2
(setA and not C => not RESULT.b) and
-- R3
((setB and not setA) => (RESULT.b and not RESULT.a)) and
-- R4
(selBMem~ and C => RESULT.b) and
R5

(not (RESULT.a and RESULT.b))

Case Study: Mutually Exclusive State Switches

e Simulink model

o Specification library

setB setA
resetB Out1 P setB res P
C C

selectB selectAB

finnuc_impl_lib
s ™ et [selB = selA ™
R srFlipFlop yo P selectA yop resetB selectB yop setB selectAB yO P
e resetA c c

srFlipFlop_impl selectA_impl selectB_impl selectAB_impl

Case Study: Mutually Exclusive State Switches

e Simulink model

o Contents of the generated srFlipFlop block in the specification library

"a)finnuc_lib b [Pa]srFiipFiop

Case Study: Mutually Exclusive State Switches

e Simulink model

o Implementation of the srFlipFlop function

| P& srFlipFlop

Case Study: Mutually Exclusive State Switches

e Simulink model

o The observer for srFlipFlop block

TASTE/AADL and Simulink Round-Trip

TASTE/AADL and Simulink Round-Trip

e Proposal to improve the mapping of multi-component Simulink models to
TASTE/AADL

e Potentially useful when:
a. The original model comes from a system engineer who already has divided the controller part of an
application into different sub-systems and verified the functional behaviour.
m In this case the top-level diagram could be converted from Simulink to AADL
b. Architecture is already modelled as an AADL model, however, verification and/or validation would
benefit from the modelling tools in Simulink.
m In this case the AADL model could be converted to a Simulink diagram, where each component is
either a subsystem (for the components with matched Simulink models) or an S-function (for
components with generated code).

e Improved language mappings between AADL and Simulink have been defined.
Tool support currently out of scope.

TASTE/AADL and Simulink Round-Trip

e Motivation
o Multi-component (and possibly also multi-rate) Simulink models

{1} PosOrder

PosOrder

SpeedOrder
Pos

PositionLoop SpeedUrder

Speed I_Ref

StByhiod
SpeedlLoop

w1) T Ref

Position |

{2 StByhod

Speed StByMod CurrentLoop

Hardware

TASTE/AADL and Simulink Round-Trip

e Option 1: Data flow and control flow through a central scheduler

o This is the current approach for integrating subsystems imported from Simulink
o Data flow and dependencies between the subsystems are embedded in the scheduler’s code

’- taste_seq_comp

Scheduler ‘
SSC_comp
comp

____SSB_comp

TASTE/AADL and Simulink Round-Trip

e Option 2: Explicit data flow, control flow in a central scheduler

o Additional sporadic interfaces for passing data.
o Intermediate data buffers are required.

b-I taste_seq_comp
Qut1

N scheduler

SSC
SSA_comp =l

SSB_comp |

comp 7
ssB ssc
In1 | In1 Int In1

TASTE/AADL and Simulink Round-Trip

e Option 3: A set of synchronous functions

o Truly synchronous semantics similar to Simulink
o Simple and intuitive. However, intermediate data and event buffers are required

TASTE/AADL and Simulink Round-Trip

e Option 4: A set of synchronous functions with dedicated container (1/2)
o The functions corresponding to individual Simulink subsystems are placed in a specific
container and this container is marked to have synchronous execution model

o Allows one to present the data flow explicitly in the model without the need for composing the
scheduler manually

o Changes required in the semantics of interface view elements:

m a new type for provided and required interfaces denoting that no code shall be generated
for the interface

m container markup to define the synchronously executed cluster

TASTE/AADL and Simulink Round-Trip

e Option 4: A set of synchronous functions with dedicated container (2/2)
o Proposed code generation workflow (Not yet implemented)

m The AADL model is parsed using Ocarina. The converter picks up functions where the
source language is QGen_Ada or QGen_C and creates QGen SystemBlock objects for
each of them
QGen system model data structure is created using the QGen metamodel API
The same APl is used for converting the block diagram to a Simulink diagram
TASTE buildsupport invokes QGen on the top-level Simulink subsystem. All contained
functions in the AADL model are contained in this diagram and processed by QGen

QGen / SSI Roadmap

QGen Roadmap 2019-2020

Support for upcoming Simulink versions

Improved support for modular and incremental code generation
Enhanced Code Performance and Quality

Enhanced CodePeer and SPARK integration

Enhanced QGen Build Performance

Improved Ada S-Function integration in Simulink

Completion of QGen TQL1 qualification

65

SSI

Concept of
Operations
System
Requirements

High-Level
Design
Detailed
Design
Software
Development

Property Identification et
QD
<8
Formal Requirements + % o
Safety & Security Properties §
2
Architecture Properties + S

Component Contracts

uoljejsuey

Software Properties +
Software Contracts

jooud

Formal Verification of
Software Contracts

SSI

SysML Requirements Diagram Simulink Synchronous Observer

Manual Refinement

ates (State.Controlled_isput_sesory);

SysML Internal Block Diagram Simulink Subsystem

Tools availability and licensing

e QGen

o Available from AdaCore as a commercial open-source product
m Please visit http://www.adacore.com/qgen

o Evaluation version will be integrated into the TASTE VM

o GPL license

e QGen SDL frontend

o Available from IB Krates or AdaCore
o and also will be integrated into the TASTE VM
o EPL license

e QGen VDM-SL frontend
o Relies of the VDM importer from Overture - GPL license and
o QGen/Gene-Auto API that is based on the Eclipse Modeling Framework (EMF) - EPL license
o EPL licensed code and GPL licensed code may only be combined under certain conditions.
o Negotiations on modifying the Overture license are ongoing with the Overture community.
Tool availability is currently pending.

@ KRATES AdaCore

inseneriburoo - engineering bureau

Thank you!

Contacts:

www.krates.ee info@krates.ee

www.adacore.com/ggen sales@adacore.com

