
Andres Toom

IB Krates OÜ / AdaCore Estonia OÜ

Qualifiable code
generation backend

for TASTE

TEC-ED & TEC-SW Final Presentation Day

11 December 2018 ESA/ESTEC

ESA Contract No. 4000118510/16/NL/CBi

IB Krates OÜ, Estonia

Outline
● Introduction

○ Project team
○ Background technologies
○ Objectives

● Code generation
○ SDL to C / Ada (SPARK)
○ VDM-SL to Ada (SPARK)
○ SDL + VDM-SL to C / Ada (SPARK)

● Design by Contract workflows
● TASTE / AADL and Simulink Round-Trip
● QGen / SSI roadmap

Introduction

Project team
● Contractor IB Krates OÜ

○ An Estonian systems integration and software development SME.
○ In close collaboration with AdaCore, leading vendor of Ada compiler and development tools.
○ Together created the QGen open source qualifiable code generator for embedded high-

integrity and safety-critical domains.
○ ESA project (2014-2015): Integrating the QGen (GMS-P) Automatic Code Generator with the

Space Component Model (Integrating QGen in TASTE).
● AdaCore Estonia OÜ

○ In 2018 the code generation product line was acquired by AdaCore and a new entity Estonia
OÜ was created for strengthening the QGen-related developments.

Background
● Follow up of the ESA-PECS project

○ Integrating QGen (GMS-P) with the Space Component Model (SCM)
○ Provided integration of the QGen code generator into the AADL-Simulink workflow of TASTE

● Existing technologies and tools
○ Component-based modelling (TASTE toolset)
○ Architectural modelling (AADL, ASN.1, …)
○ Functional modelling (Simulink, SDL, ...)
○ Code generators (Ocarina, Simulink Coder, QGen, ...)
○ Explicitly coded components (C, Ada, ...)
○ ITU Specification and Description Language (SDL)
○ OpenGEODE tool
○ Vienna Development Method (VDM)
○ Overture tool

● What is added
○ QGen for code generation from SDL and VDM-SL
○ Additional component-based modelling workflows using the above

Trusted Code Generator

• From Simulink® &
Stateflow®

to Ada SPARK (Ada subset)
or MISRA C

• Customizable code
generation

• Qualification for DO-178C
at Tool Qualification Level 1
ongoing

• Consistency of the
generated code and the
Simulink® simulation

Model Verifier

• Formal static model verifier for
runtime errors and functional
properties

• Aiming for DO-178C
at Tool Qualification Level 5

Integrated Model-Based
Development Toolset

• Model-level debugger

• Processor-In-the-Loop testing

What is QGen? (1/2)

6

● "The gcc for modeling languages"
● Designed to accept multiple languages in input/output, including in-house DSLs
● A single code generation style/strategy for all of your modeling languages
● XMI-based model import/export at different abstraction levels

What is QGen? (2/2)

Source
Code

Sim ulink
M odel

Access to intermediate representations

M akefile
generation

Processor
custom izatio

n

M odeling
standard
checking

Integration with
UM L/SysM L/...

Additional
verificatio

n

Extract
traceability

data

QGen
An open and extensible framework

QGen Debugger – Unique Model Debugging
Capability• Bridge the gap between control

engineering and software engineering

• Integrate code generated from Simulink
models with code written manually

• Analyse model behavior by stepping
through source code

• Display side-by-side synchronized view
of Model, Source Code and Object
Code

• Execute code on Host, Local Emulator
or even your Embedded Target

• Currently, limited Stateflow support
(planned for 2019) 8

QGen Debugger Features

9

Insert breakpoints on blocks or model
references

- Blocks highlighting
- Easily switch between code and model or debug

side-by-side

Display signal values dynamically
- Examine values in Variables view
- Set persistent values
- Log values to file

Programming
Language

Design
Method

Verification
Toolset

HIGH
RELIABILITY

SPARK 2014
A programming language that includes a
specification language

▪ Specification and implementation defined for each
program module — in the same language.

▪ Answers specific problems for embedded systems
developers

▪ closes gap between formal specifications and code

▪ fewer coding errors

▪ Program your specification and your proofs!

Practical Application of Formal Methods
with SPARK

QGen for TASTE & Simulink
● ESA-PECS Project (IB Krates, 2013-2015)

○ "Integrating the QGen Automatic Code Generator with the Space Component Model"
○ Improved code generation from Simulink®/Stateflow® in TASTE
○ Code generation driven by a single build script, less manual steps, fully repeatable
○ Direct use of native data types defined in ASN.1
○ Less buffers required. Cleaner glue code
○ Code generation with formal verification support
○ CodePeer and SPARK integration
○ Dedicated support for on-target regression testing
○ Comparison against stored simulation results. No need for external IO or software
○ Comparative study of the DO-178C and ECSS based qualification

Objectives of the Current Project
● O1 (Main objective)

○ Provide a universal and qualifiable code generation backend for the two main models for behavioural
specifications in TASTE: SDL and VDM based on the QGen toolset.

● O2 (Supports O1)
○ Support the simulation and debugging of SDL + VDM-SL models from the TASTE/OpenGEODE

environment based on the QGen code generation backend.
● O3 (Extends O1)

○ Develop an approach for specifying high-level formal properties (contracts) for a component in VDM
○ transforming and propagating those contracts to detailed design models (e.g. Simulink) and/or

generated program code (e.g. SPARK Ada).
○ using these contracts for automatic consistency checking between the high-level specification, design

and implementation.
● O4 (General enhancement)

○ Improve the mapping between architectural model in AADL and architecture elements expressed in
Simulink models.

● O5 (Validation and verification)

Code Generation from SDL

● ITU-T standardised (Z.100 .. Z.106) formal language for the specification of the
behaviour of reactive systems, such as real-time systems

● Complete and unambiguous formal semantics making it suitable for high-level
design as well as low-level design and automatic code generation

● Supports the ASN.1 language for the specification of datatypes
● Tools

○ PragmaDev Studio (RTDS) -- Commercial
○ OpenGEODE -- Open Source. Integrated in TASTE

SDL - Specification and Description Language

Code generation from SDL with QGen

● Ada and C code generation from a subset of SDL (with ASN.1 datatypes)
● Pivot language: Extended Gene-Auto/QGen metamodel (Ecore)

○ Allows for standardised XMI-based model exchange with external tools

● 1st stage: ANTLR 4-based importer
○ SDL importer is based on the OpenGEODE ANTLR grammar (sdl92.g)
○ ASN.1 data definitions are imported based on the XML data structure produced by the

ASN1SCC tool
● 2nd stage: the ANTLR tree is converted to the Gene-Auto/QGen Ecore metamodel.

○ Uses an Eclipse Modeling Framework (EMF) provided core features.
○ Model is serialized as an XMI file

QGen SDL Converter — Frontend (Java)

QGen SDL Converter — Backend (Ada)
● Code generation with QGenc

○ Input: Model XMI
○ Some preprocessing of SDL models to be structurally closer to Stateflow models
○ Type inference extensions for sequence types, octet types
○ Backend support for SDL operators/functions: append, length, write, writeln
○ Improved support for custom types and slice operations
○ New expansion and postprocessing steps. Mainly related to sequences
○ Output: Ada or C code

SDL Features and Limitations
● Supported features

○ Most of the features that are supported in OpenGEODE
● Unsupported features

○ SDL type (process) instances, processes with formal parameters
○ Use clauses to non-ASN.1 external modules
○ Parameterized ASN.1 types, IA5String ASN.1 type
○ Continuous signals with explicit priority value
○ Informal text
○ Non-deterministic choice (any)

● Other limitations
○ The same variable cannot be passed simultaneously to an in and out/in-out parameter or multiple

out/in-out parameters when Ada code is generated
○ ASN.1 set type definition is supported, but the ASN1SCC set implementation is not (Ada Functional

Sets are supported instead)
○ QGen does not detect all the same errors as OpenGEODE does. It is assumed that the model was

checked before the code generation step.

Case Study 1 - TUT Nanosatellite Case Study
● Tallinn University of Technology (TUT) Nanosatellite project.

○ TCTM protocol for ground – satellite communication
○ Based on AX.25 (amateur radio)
○ Modeled by the master student Dan Rodionov

● Results
○ Ada code was generated using OpenGEODE
○ C and Ada code was generated with QGen
○ Functional verification of the generated code wrt. OpenGEODE simulation
○ Some model-level issues were detected during the process and fixed

■ E.g. missing initialization of local and out variables
○ Identical behaviour between OpenGEODE and QGen generated code was achieved after that
○ The performance of QGen generated code was somewhat lower from OpenGEODE’s

Case Study 2 - OpenGEODE Regression Testsuite
● Case study 1 (TUT Nanosat) fully supported
● Case study 2 (OpenGeode regression testsuite)

○ Ada code generation: 71% passes OpenGEODE testsuite
○ C code generation: 64% passes OpenGEODE testsuite

Code Generation from VDM-SL

VDM - Vienna Development Method
● VDM is a formal method that has a long history for the development of

computer-based systems.
○ The specification of the first PL/1 and Ada compilers

● ISO standardized syntax and semantics.
● The core concepts of VDM are formalised in the VDM Specification Language

(VDM-SL) and extended by object-oriented features in VDM++ and real-time
concepts in VDM-RT.

● The VDM-SL language features include the specification of
○ Data types, functions and operations on data
○ Powerful and easy to use collections (sets, sequences, mappings)
○ Functions and operations can be defined implicitly through contracts and/or explicitly

● Tools: VDMTools (commercial), Overture (open source).
● VDM is one of the functional languages supported by TASTE.

Code generation from VDM-SL with QGen

● Ada SPARK code generation from a subset of VDM-SL
(with VDM-SL native and ASN.1 datatypes)

● Pivot language: Extended Gene-Auto/QGen metamodel (Ecore)
○ Allows for standardised XMI-based model exchange with external tools

VDM-SL to SPARK Converter — Frontend (Java)
● Relies heavily on the Overture toolset
● Imports information from the intermediate Abstract Syntax Tree (AST)
● Uses the AST visitor pattern provided by Overture for creating QGen/Gene-

Auto metamodel objects
● The QGen/Gene-Auto model is serialized to an XMI file

VDM-SL to SPARK Converter — Backend (Ada)
● Input: (Code Model) XMI
● Preprocessing of VDM-SL models
● Generic code model expansion and post-processing
● Output: Ada SPARK code

Code Generation from VDM-SL (1/2)
● Code generator implemented

○ Case study 1: (finnuc) supported
○ Case study 2: (AlarmSL) supported with reduced model

■ Sequence definitions must be given in ASN.1
■ Record pattern matching is not supported (can be avoided)
■ Implicit functions are not supported
■ Type invariants are not generated

● Supported features (next slide)

● Supported VDM-SL features
○ Basic VDM-SL types: real, int, nat, nat1, bool. Composite types (records)
○ Unions of quote types (enumerations)
○ ASN.1 type definitions for the same subset
○ Token types with literal values.
○ Flat and multi-module specifications
○ Most common unary and binary operations: +, -, *, …
○ State and value definitions
○ Assignments, Let statements
○ Operations and explicit function definitions
○ Pre- and postconditions
○ Map and Set types. Based on Ada Functional Containers. Most operators supported
○ Sequence types. Based on ASN.1 / ASN1SCC. Limited support

Code Generation from VDM-SL (2/2)

Code Generation from SDL + VDM-SL

● In the TASTE modelling philosophy it is possible to create heterogeneous models that has
components implemented in SDL and other languages that provide a certain C language interface
for binding the respective Provided and Required Interfaces (PI/RI) of the components.

● The VDM2SPARK code generator supports this pattern.
● To ensure that the data types at the interfaces are compatible they must be defined using a common

ASN.1 specification for both models.
● When the switch --taste-interface is passed to the VDM2SPARK tool, then all the formal parameters

of Ada functions or procedures generated from VDM-SL operations (but not from functions) have an
additional export with C conventions pragma and the argument passing mode will be changed from
IN to IN OUT.

● This effectively means that values can be passed to these subroutines by reference (pointer)
removing memory overhead that would be otherwise caused by interfacing.

● The C name of the subroutine will have an additional prefix “PI_” due to comply with the TASTE
naming conventions (PI - Provided Interface).

● The function names don’t have to be compatible. It is possible to use lightweight glue code for
binding the interfaces.

Code Generation from SDL + VDM-SL

● ASN.1 definitions must be converted to VDM-SL

Code Generation from SDL + VDM-SL (Example)

● An example VDM-SL specification that uses these types

Code Generation from SDL + VDM-SL (Example)

● Generated Ada SPARK specification

Code Generation from SDL + VDM-SL (Example)

● SDL model

Code Generation from SDL + VDM-SL (Example)

● The following simple glue code in the C language is used to combine the code generated from SDL
and VDM-SL models

Code Generation from SDL + VDM-SL (Example)

Simulation and Debugging Support

QGen backend for simulation and debugging

● The scope of this objective was reduced
● It is currently possible to launch QGen via OpenGEODE for code generation

from SDL models
● The interface for reading/writing run-time values from OpenGEODE is

implemented
● The interface for reading/writing the chart state from OpenGEODE is not yet

implemented

Design by Contract Workflows

Transformation of VDM-SL contracts for consistency
verification (1/3)
● The Design-by-Contract (DbC) is a well-known paradigm and methodology.
● Now emerging also in MBSE - specify and verify contracts at the model level.
● A variant of the DbC is proposed using VDM-SL and Simulink.

Potentially, also AADL (TASTE).
● Potential use cases:

○ Algorithm design is performed in Simulink. This may be practical for instance in control applications
where one can benefit from dedicated blocks such as Integrators, Lookup tables etc.

○ The creation of test data. Simulink is a handy tool for composing and visualizing varions test vectors
and comparing the outputs provided by designed subsystem with expected ones.

○ Verification and validation using the Simulink, QGen or SPARK toolsets.
● A more general parallel QGen-related initiative is Software-to-System Integrity.

(SSI) – translation and verification of SysML models with formal contracts.

Transformation of VDM-SL contracts for consistency
verification (2/3)

Transformation of VDM-SL contracts for consistency
verification (3/3)
● VDM-SL to Ada SPARK

○ Core functionality:
■ VDM-SL preconditions and postconditions would be translated to Ada preconditions and

postconditions
■ VDM-SL invariants can be translated to Ada type invariants or assertions (not yet implemented)

● Extension to Simulink
○ From a VDM-SL model generate a skeleton of a Simulink model with contracts on IO
○ Contracts are implemented as Ada-based S-function (executable black box) blocks
○ The VDM-SL model can modified and the S-function blocks regenerated

● Possible future extension to AADL (and TASTE)
○ The VDM-SL contracts for the components' IO are embedded as AADL properties in the AADL model
○ Semantic verification of the contracts performed either at Simulink or code level.
○ (Ongoing work in the scope of the QGen Software-to-System Integrity (SSI) initiative)

Expressing contracts in Simulink

● Contracts for Simulink to SPARK conversion
○ Contracts are encapsulated in subsystems (further referred as observer subsystems) and explicitly

marked with mask type QGenContract. Such an observer can be attached to any signal in model.

VDM-SL to Simulink Mapping (1/3)
● VDM-SL module

○ Module with name <modulename> shall be converted to Simulink libraries as follows:
■ Specification library named <modulename>_lib. This library always exists
■ Implementation library named <modulename>_impl_lib. This library is generated only when there

are any functions or operations with explicit body.
● Types

○ Shall be converted to datatype definitions according to the VDM-SL to Ada SPARK mappings and
made available to Simulink as matlab script <modulename>.m

VDM-SL to Simulink Mapping (2/3)
● Functions/operations

○ Each function or operation (sub-program) named <fname> shall be converted to:
■ A SPARK function or procedure <fname> in case the sub-program has an explicit body
■ An S-function block <fname> allowing to invoke the generated SPARK sub-program from Simulink,

stored in the Implementation library.
■ A Simulink model <fname> containing

● Input ports corresponding to the sub-program input arguments,
● Output port corresponding to the return value
● Output ports corresponding to output arguments (if any)

■ Reference block pointing to the <fname> S-function in the implementation library
○ Subsystem <fname> in the specification library containing

■ Input ports corresponding to the sub-program input arguments,
■ Output port corresponding to the return value
■ Output ports corresponding to output arguments (if any)
■ ModelReference block pointing to the <fname> model
■ Subsystems corresponding to pre-and postconditions

VDM-SL to Simulink Mapping (3/3)
● Pre- and postconditions

○ Each pre- and postcondition in VDM shall be converted to an observer block in the Specification
library
■ The name of the observer shall be <fname>_obs[_pre|_post]
■ Type of the observer shall be defined by mask type either QGenPrecondition or

QGen_Postcondition
■ The original VDM text shall be stored in mask parameter QGenContractVDM
■ Generated SPARK code shall be stored in mask parameter QGenContractSPARK
■ Subsystem shall have an input port for each variable the contract used
■ It shall contain an S-function executing the generated SPARK code and returning true/false to an

Assertion block.
○ In case a function does not have postcondition, but has explicit definition the explicit definition shall be

used for postcondition. The simulink structured shall be generated as above, except that
■ The executed S-function is the one generated in the implementation library
■ Output of the S-function shall be compared with output of the subsystem where postcondition is

applied and this comparison attached to the Assert block

Case Study: Mutually Exclusive State Switches
● We use a simple model from [1] implementing two subsystems with mutually

exclusive states.
● The paper presents number of contracts on the specification and shows, that

the given design violates one of the requirements.
● Here we

○ model the same specification in VDM-SL
○ perform simulation in Simulink demonstrating the violation of the contract
○ and also prove the violation using GNATProve

[1] Pakonen, A; Tahvonen, T; Hartikainen, M; Pihlanko, M, “Practical applications of model checking in the Finnish nuclear
industry”, Proceedings of the 10th International Topical Meeting on Nuclear Plant Instrumentation, Control and Human
Machine Interface Technologies, NPIC & HMIT 2017, 11 - 15 June, 2017, San Francisco, CA, USA.

● The original model from [1]

Case Study: Mutually Exclusive State Switches

[1] Pakonen, A; Tahvonen, T; Hartikainen, M; Pihlanko, M, “Practical applications of model checking in the Finnish nuclear
industry”, Proceedings of the 10th International Topical Meeting on Nuclear Plant Instrumentation, Control and Human
Machine Interface Technologies, NPIC & HMIT 2017, 11 - 15 June, 2017, San Francisco, CA, USA.

Case Study: Mutually Exclusive State Switches
r1: “The set_a command shall lead to a, if b is not already selected”,

or as a formal LTL property p1: G((set_a ∧ ¬b) → a).
r2: “The set_a command shall reset b, if c is not active”,

or p2: G((set_a ∧ ¬c) → b).
r3: “The set_b command shall lead to b and reset a, if set_a is not active”,

or p3: G((set_b ∧ ¬set_a) → (b ∧ ¬a)).
r4: “If a has been selected, the signal c shall change the selection to b”,

or p4: G((Ya ∧ c) → b).
r5: “Only one mode (a or b) shall be active at the same time”,

or p5: G(¬(a ∧ b))

[1] Pakonen, A; Tahvonen, T; Hartikainen, M; Pihlanko, M, “Practical applications of model checking in the Finnish nuclear
industry”, Proceedings of the 10th International Topical Meeting on Nuclear Plant Instrumentation, Control and Human
Machine Interface Technologies, NPIC & HMIT 2017, 11 - 15 June, 2017, San Francisco, CA, USA.

Case Study: Mutually Exclusive State Switches
● VDM-SL specification for the state and types

Case Study: Mutually Exclusive State Switches
● VDM-SL specification for the elementary functions and operations

Case Study: Mutually Exclusive State Switches
● VDM-SL specification for the integral logic

Case Study: Mutually Exclusive State Switches
● Simulink model

○ Specification library

○ Implementation library

Case Study: Mutually Exclusive State Switches
● Simulink model

○ Contents of the generated srFlipFlop block in the specification library

Case Study: Mutually Exclusive State Switches
● Simulink model

○ Implementation of the srFlipFlop function

Case Study: Mutually Exclusive State Switches
● Simulink model

○ The observer for srFlipFlop block

TASTE/AADL and Simulink Round-Trip

TASTE/AADL and Simulink Round-Trip

● Proposal to improve the mapping of multi-component Simulink models to
TASTE/AADL

● Potentially useful when:
a. The original model comes from a system engineer who already has divided the controller part of an

application into different sub-systems and verified the functional behaviour.
■ In this case the top-level diagram could be converted from Simulink to AADL

b. Architecture is already modelled as an AADL model, however, verification and/or validation would
benefit from the modelling tools in Simulink.
■ In this case the AADL model could be converted to a Simulink diagram, where each component is

either a subsystem (for the components with matched Simulink models) or an S-function (for
components with generated code).

● Improved language mappings between AADL and Simulink have been defined.
Tool support currently out of scope.

TASTE/AADL and Simulink Round-Trip
● Motivation

○ Multi-component (and possibly also multi-rate) Simulink models

TASTE/AADL and Simulink Round-Trip
● Option 1: Data flow and control flow through a central scheduler

○ This is the current approach for integrating subsystems imported from Simulink
○ Data flow and dependencies between the subsystems are embedded in the scheduler’s code

TASTE/AADL and Simulink Round-Trip
● Option 2: Explicit data flow, control flow in a central scheduler

○ Additional sporadic interfaces for passing data.
○ Intermediate data buffers are required.

TASTE/AADL and Simulink Round-Trip
● Option 3: A set of synchronous functions

○ Truly synchronous semantics similar to Simulink
○ Simple and intuitive. However, intermediate data and event buffers are required

TASTE/AADL and Simulink Round-Trip
● Option 4: A set of synchronous functions with dedicated container (1/2)

○ The functions corresponding to individual Simulink subsystems are placed in a specific
container and this container is marked to have synchronous execution model

○ Allows one to present the data flow explicitly in the model without the need for composing the
scheduler manually

○ Changes required in the semantics of interface view elements:
■ a new type for provided and required interfaces denoting that no code shall be generated

for the interface
■ container markup to define the synchronously executed cluster

TASTE/AADL and Simulink Round-Trip
● Option 4: A set of synchronous functions with dedicated container (2/2)

○ Proposed code generation workflow (Not yet implemented)
■ The AADL model is parsed using Ocarina. The converter picks up functions where the

source language is QGen_Ada or QGen_C and creates QGen SystemBlock objects for
each of them

■ QGen system model data structure is created using the QGen metamodel API
■ The same API is used for converting the block diagram to a Simulink diagram
■ TASTE buildsupport invokes QGen on the top-level Simulink subsystem. All contained

functions in the AADL model are contained in this diagram and processed by QGen

QGen / SSI Roadmap

QGen Roadmap 2019-2020
● Support for upcoming Simulink versions
● Improved support for modular and incremental code generation
● Enhanced Code Performance and Quality
● Enhanced CodePeer and SPARK integration
● Enhanced QGen Build Performance
● Improved Ada S-Function integration in Simulink
● Completion of QGen TQL1 qualification

65

Hard to engage with
systems engineers and
project managers with
technology focused

here!

SSI allows earlier
engagement.

SSI

Property Identification

Formal Requirements +
Safety & Security Properties

Architecture Properties +
Component Contracts

Software Properties +
Software Contracts

Formal Verification of
Software Contracts

traceabilit
y

translation translation

proof

SSI
SysML Requirements Diagram Simulink Synchronous Observer SPARK

Contracts

SysML Internal Block Diagram Simulink Subsystem SPARK
Code

Manual Refinement

Translatio
n

Translatio
n

QGen Verifier

Translatio
n

Translatio
n

SPARK
Tools

● QGen
○ Available from AdaCore as a commercial open-source product

■ Please visit http://www.adacore.com/qgen
○ Evaluation version will be integrated into the TASTE VM
○ GPL license

● QGen SDL frontend
○ Available from IB Krates or AdaCore
○ and also will be integrated into the TASTE VM
○ EPL license

● QGen VDM-SL frontend
○ Relies of the VDM importer from Overture - GPL license and
○ QGen/Gene-Auto API that is based on the Eclipse Modeling Framework (EMF) - EPL license
○ EPL licensed code and GPL licensed code may only be combined under certain conditions.
○ Negotiations on modifying the Overture license are ongoing with the Overture community.

Tool availability is currently pending.

Tools availability and licensing

Thank you!

Contacts:

www.krates.ee info@krates.ee

www.adacore.com/qgen sales@adacore.com

