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ABSTRACT

Atmospheric entries at high velocities can introduce con-
siderable radiative heat fluxes. The calculation of these
fluxes can be substantially impacted by different non-
equilibrium effects, which are occurring in the surround-
ing flow. In this paper, the coupled Particle-in-Cell and
Direct Simulation Monte Carlo Code PICLas is intro-
duced and the theoretical background of the code is de-
scribed. The well-established radiation solver PARADE,
previously developed at IRS, is not suitable to be coupled
with a DSMC code due to several reasons, which are dis-
cussed in this paper. Therefore, a new radiation solver is
being developed and implemented in PICLas. Results for
radiative atomic and molecular bound-bound transitions
are presented and compared to the results of PARADE.
Additionally, a concept for solving the radiative transfer
equation using the Monte Carlo method is presented and
results are shown for the classical and a noise-reducing
approach.

Key words: DSMC, PICLas, Radiation, Radiation Solver,
Radiative Transfer Solver.

1. INTRODUCTION

Radiative processes are important for describing and un-
derstanding plasma phenomena. The radiative heat flux
can be substantial during atmospheric entries [18]. Typi-
cally, flow field simulations are conducted using conven-
tional CFD tools, such as Navier-Stokes solvers. These
solvers are well established for a wide range of flow con-
ditions, and their efficiency in dense flow regions, where
radiative heat flux becomes most important, is a partic-
ular advantage. However, treating non-equilibrium ef-
fects in the flow field, which can strongly influence the
radiative heat transfer, is problematic with CFD meth-
ods. Here, gas kinetic approaches become attractive al-
ternatives, since they are well suited for simulating non-
equilibrium flows. One such approach is the Direct Sim-
ulation Monte Carlo (DSMC) method. Using this well-
established approach, it is possible to compute detailed
information about each flow species, including excitation
temperatures, densities, and the distribution functions for

each degree of freedom. Previous approaches that com-
bine a particle code with a radiation solver [4, 19] have
indeed showed promising results.

A specific case in which non-equilibrium effects are sig-
nificant is the reentry of the Hayabusa capsule. Fig. 1(a)
shows that the temperatures (as calculated with the
DSMC code PICLas [15]) along the symmetry axis in
front of the stagnation point are far from equilibrium. Al-
though they do converge toward a single value, they can-
not reach thermal equilibrium before the flow reaches the
stagnation point. Figure 1(b) shows the electronic excita-

−0.060 −0.040 −0.020 0.000

10000

30000

50000

x, m

Te
m

pe
ra

tu
re

,K

Ttrans
Trot
Telec
Tvib

(a) Mean vibrational, rotational, electronic excitation and
translational temperatures

−0.05 −0.04 −0.03 −0.02 −0.01 0

10000

30000

50000

x, m

Te
m

pe
ra

tu
re

,K

Telec,N Telec,O Telec,N2 Telec,O2
Telec,NO Telec,N+ Telec,O+ Telec,N+

2Telec,O+
2

Telec,NO+

(b) Electronic excitation temperatures for different species

Figure 1: Temperatures along symmetry axis in front
of stagnation point of Hayabusa reentry (h = 78.8 km,
M = 40) [16].



tion temperatures of the species used in this simulation.
In addition to the lack of equilibrium between the differ-
ent degrees of freedom, a non-equilibrium state also ex-
ists between different species within the same degree of
freedom. When calculating radiation effects, the assump-
tion of equilibrium among all species could lead to non-
negligible errors due to over- or underestimating strong
radiators. Moreover, assuming a Boltzmann distribution
for the excitation levels within a specific degree of free-
dom is also questionable in many cases.

A critical point in the radiation modeling is solving the
radiative transfer equation (RTE). Here, different algo-
rithms exist with different levels of accuracy and compu-
tational effort. With the Monte Carlo Method [8], the en-
ergy is divided into an integer number of photons whose
properties, such as position, direction, and wavelength,
are randomly assigned. The path of each beam through
the cells is traced and the optical path is calculated. Sub-
sequently, the RTE is solved in the direction of the beam.
This method is very accurate when there are many traced
photons.

This paper describes the first steps toward linking the dif-
ferent code structures of a flow field solver (PICLas), a
radiation solver, and a radiative transfer solver, follow-
ing the suggestions of Pfeiffer et al. [22]. PICLas is in-
troduced and described in section 2.1. Initially, it was
planned to use the radiation solver PARADE [24]. In a
coupling context, however, PARADE has some disadvan-
tages. These are addressed in section 2.2, where also a
newly developed radiation solver for the PICLas frame-
work is introduced. Results for atomic and molecular
bound-bound radiation are shown in sections 2.2.1 and
2.2.2, respectively. Moreover, first results for solving the
RTE using a Monte Carlo approach are presented in sec-
tion 2.3.

2. PLASMA-GAS KINETIC AND RADIATION
SOLVERS

2.1. Plasma Kinetic Code PICLas

PICLas is a coupled Particle-in-Cell (PIC) and DSMC
code that enables the simulation of complex non-
equilibrium chemically reacting flows, as well as plas-
mas in the electrostatic or electromagnetic regime [15].
Instead of solving classic continuum models like the
Navier-Stokes- or the magnetohydrodynamic equations
for the description of non-equilibrium plasmas, the open
source code PICLas solves the Boltzmann equation(
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Here, f = f(~x,~v, t) is the particle distribution function at
the six-dimensional phase space point (~x,~v) at the time t.
Furthermore, m is the particle mass, ~F an external force
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Figure 2: Typical time step of the PIC-DSMC Code
PICLas, indicating the possibility to use additional
solvers, e.g. a Fokker-Planck based Coulomb collision
solver.

and (∂f/∂t)coll the so-called Boltzmann collision inte-
gral, which describes intermolecular collisions between
the particles in the flow. The basic idea of the DSMC and
PIC method is the approximation of the distribution func-
tion by a certain number of particlesN at the positions ~xk
and the velocities ~vk at the corresponding time t, leading
to

f(~x,~v, t) =

N∑
k=1

wkδ(~x− ~xk(t))δ(~v − ~vk(t)). (2)

Additionally, the particle weighting factor wk is intro-
duced, which allows the handling of large particle num-
bers with a lower number of simulation particles. A typ-
ical time step of PICLas is shown in Fig. 2. Due to the
operator splitting approach, a consecutively execution of
all solvers (PIC, DSMC, etc.) is possible.

The DSMC method, which was first introduced by Bird
[1], performs collisions among freely moving particles
and between particles and boundaries of the computa-
tional domain. Each collision includes an energy and mo-
mentum exchange and optionally a relaxation process of
internal degrees of freedom as well as chemical reactions.
A typical time step for DSMC is depicted in Fig. 3.

In the pairing process, two particles are chosen for a pos-
sible collision. The pairing itself can be done by different
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Figure 3: Typical time step of the DSMC method.



ways, as long as the distance between the chosen particles
is smaller than the mean free path of the gas, e.g. by mesh
adaptation [1]. In PICLas, particle pairing is done on the
basis of searching the nearest neighbor in each computa-
tional cell. Additionally, this pairing method is combined
with an octree scheme in order to reduce the computa-
tional costs of searching for the nearest neighbor [20].

The collision process can lead to the relaxation of in-
ner degrees of freedom as well as to chemical reactions.
PICLas enables the handling of rotational energy mod-
eled as a rigid rotor in a continuous manner. The vibra-
tional energy is treated using the quantized harmonic os-
cillator model. For the electronic excitation energy, the
exact quantized energies and degeneracies are read in as a
database for each species. This is an important advantage
of the DSMC method compared to classic CFD models
for the radiation coupling. In the DSMC model, the inner
energies, which are the key source for the radiation pro-
cess, are not restricted to a Boltzmann distribution. In-
stead, each particle carries quantized energies for the vi-
brational and electronic excited states. This allows for a
much more detailed investigation of non-equilibrium ef-
fects in radiation processes. Experimental studies have
shown that these non-equilibrium effects can be crucial
for the correct prediction of radiation heat fluxes and in-
terpretation of spectrometer measurements [13]. PICLas
uses a Larsen-Borgnakke model described in Ref. [3] for
the relaxation process. It is worth mentioning that poly-
atomic species (such as CO2 and CH4) are modeled in
PICLas as well [21]. In this case, each molecule pos-
sesses more than one vibrational quantum number ac-
cording to the number of atoms in the molecule.

In addition to the relaxation of the inner degrees of free-
dom, collisions can lead to chemical reactions. Two ap-
proaches to model chemical reactions are implemented
in PICLas, enabling ionization and charge exchange re-
actions in addition to the common chemical reactions,
such as dissociation, recombination and exchange reac-
tions. The first model is the standard DSMC chemistry
model, based on the extended Arrhenius equation [1].
The reaction probability depends on the Arrhenius coeffi-
cients, which are typically determined by measurements
under continuum conditions. Thus, the Arrhenius equa-
tion needs a macroscopic temperature value, which is not
defined in a collision of two particles. Therefore, the mi-
croscopic collision energy has to be translated to a macro-
scopic temperature by making equilibrium assumptions.
The second implemented model is the Quantum-Kinetic
(Q-K) model proposed by Bird [2], which depends solely
on statistical mechanics and offers a phenomenological
approach. As a result, the Q-K model depends only on
the collision energy and fundamental species data.

The last step in the DSMC method is the sampling of
macroscopic values like density, bulk velocity or temper-
ature that are of interest in most engineering problems
rather than particle information like internal energies or
microscopic particle motion. The calculation of these
macroscopic values is done by evaluating moments of the
particle distribution function. Nevertheless, the calcula-

tion of temperatures for the inner degrees of freedom and
for translation leads to a loss of information about the
distribution function itself. To capture non-equilibrium
effects correctly, a more sophisticated approach for a cou-
pling with a radiation solver, which will be investigated
in future work, is to handle the sampled distribution func-
tion instead of sampled moments.

2.2. Line-By-Line Atomic Bound-Bound Radiation
Modeling

Initially, it was planned to use PARADE (PlasmA RAdi-
ation DatabasE) [24] to post-process the flow field data
in terms of radiation calculation. PARADE is a line-
by-line code to calculate radiative properties in terms of
spectral emission and absorption coefficients. The de-
velopment started in 1994 cooperatively by the Institute
of Space Systems (IRS) and Fluid Gravity Engineering
(FGE), supported by the European Space Agency (ESA).
PARADE is a combination of an extensive database and
various routines needed to process this data for a given
thermodynamic condition. Its capabilities include the
calculation of radiation for numerous atomic and molec-
ular species, the ability to account for different radiation
mechanisms (bound-bound, bound-free, and free-free),
as well as the consideration for various line broadening
processes.

Concerning the purpose of a coupling with a DSMC
module, however, there are several difficulties using
PARADE. The temperature input is limited to one trans-
lational and one electronic excitation temperature, which
are used for all species. Also, the outdated code structure
makes parallelization very difficult and data transfer from
PICLas to PARADE and back in a high-performance
computing context is not possible without extensive code
changes. Due to the cost of effort of a long-term code
development, the decision was therefore made to imple-
ment the physics of PARADE into a new code structure
within the PICLas framework. The extensive database of
PARADE shall be maintained and the use of all prede-
fined characteristics for energy levels and transition lines
shall be enabled. The following section gives an overview
of the implemented bound-bound radiation.

2.2.1. Atoms

Radiation modeling of bound-bound transitions requires
at least knowledge about the spectral position of a tran-
sition line, its intensity, and its shape. In this section, a
line-by-line concept of atomic bound-bound radiation is
presented.

Line position. All atomic bound-bound radiation re-
sults from pure electronic transitions. It can be illus-
trated by Bohr’s atomic model, which depicts the princi-
ples of radiation from electronically excited states despite



its generally limited validity. An excited electron corre-
sponds to a higher orbit and has a limited residence time
in this excited state. The electron drops back to an ener-
getically lower level by emitting a photon if the energy is
not transmitted to another particle non-radiatively by col-
lision. The energy of the photon is described exactly by
the difference between the energies of the two electronic
states, leading to a defined frequency ν.

Ephoton = hν = E′el − E′′el (3)

The different energy levels and, therefore, the spectrum
are characteristic for each species.

Line intensity. The line intensity for each transition
line relates to the emission coefficient ε for a specific line

ε = n′
A′→′′hν

4π
, (4)

with the upper state density n′, the Einstein coefficient for
spontaneous emission A′→′′ , the Planck constant h, and
the frequency of the emitted light ν. Therefore, the line
intensity depends on the transition probability in terms of
the Einstein coefficient for spontaneous emission

A′→′′ =
16π3ν3

3ε0hc3
|〈ψ′|µ (r) |ψ′′〉|2, (5)

where ε0 is the vacuum permittivity and the primed and
double primed values denote upper and lower state, re-
spectively. The transition moment |〈ψ′|µ (r) |ψ′′〉|2 is
defined by the squared overlap integral of the wave func-
tions of involved upper and lower states and the corre-
sponding dipole moment µ(r).

Line broadening. Owing to the finite lifetime of the
atomic states, the transition line is not infinitely sharp.
Also, the plasma perturbs the eigenstates of emitting
atoms and ions so that the transitions are both broadened
and shifted from their unperturbed values [5]. All broad-
ening mechanisms can be described with Lorentzian or
Gaussian profile functions and their corresponding full
widths at half maximum (FWHM). The combined ef-
fect of two independent line broadening mechanisms is
given by the convolution integral of the two profile func-
tions, in this specific case resulting in a Voigt profile.
Its width is a rather complicated function of the widths
of the Lorentzian and Gaussian lines. Attempts have
been made to find simplified relationships. In this work,
the approach of Olivero & Longbothum [17] is used,
which describes the Voigt-width with a maximum inac-
curacy of 0.02%. For atomic radiation, Lorentzian pro-
file widths are calculated for natural broadening, Stark
broadening, Van der Waals broadening, Lorentz broaden-
ing, and resonance broadening, as already implemented
in PARADE [24]. The total Lorentzian broadening is ob-
tained by adding up the single components. The broaden-
ing due to the thermal translational motion of the atoms
(Doppler-effect), the so called Doppler broadening, re-
sults in a Gaussian profile function and is also considered
in PARADE [24].

Results. Based on the information about the position,
the intensity, and the shape of the transition lines, spec-
tral emission coefficients are calculated. Energy levels
and Einstein coefficients, which are necessary for the
calculation, are taken from NIST [11] and Wiese et al.
[25] and are already implemented in the used database of
PARADE. A comparison of results from PARADE with
results from the developed radiation solver in the PICLas
framework is given in Fig. 4. Figure 4(a) shows the emis-
sion spectrum of atomic nitrogen (NI ) and atomic oxy-
gen (OI ) at translational temperatures of 2000 K, elec-
tronic excitation temperatures of 10 000 K and number
densities of 2.46 · 1021 cm−3. Figure 4(b) shows the
atomic oxygen triplet at 777 nm with a finer discretiza-
tion at the same conditions. An excellent agreement can
be stated.
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Figure 4: Comparison of atomic bound-bound radiation
in a single cell of calculations with PARADE and the de-
veloped radiation solver.



2.2.2. Molecules

The modeling of molecular radiation again requires at
least knowledge about the line position, the line inten-
sity, and the line shape. In this section, a line-by-line
concept of molecular bound-bound radiation for diatomic
molecules is presented.

Line position. Compared to atoms, molecules do not
produce specific transition lines but complete bands due
to the ability to store energy in additional inner degrees of
freedom (vibration and rotation). The energy difference
of a rotationally, vibrationally and electronically excited
molecule is given by

∆E = hν = ∆Eel + ∆Evib + ∆Erot. (6)

For further calculation, it has been proven beneficial to
use the energy normalized by the product hc, since a di-
rect conversion into wavenumbers ν̄ is possible:

ν̄ = Te′ −Te′′ +Ge′,v′ −Ge′′,v′′ +Fe′,v′,J′ −Fe′′,v′′,J′′

(7)
The upper state is described by the quantum numbers
e′, v′, and J ′ for the electronic excitation (Te′ ), the vi-
brational excitation (Ge′,v′ ), and the rotational excitation
(Fe′,v′,J′ ). The lower state is indicated by the super-
script ′′. The vibrational energy of an anharmonic os-
cillator is described by

Gv = ωe

(
v +

1

2

)
︸ ︷︷ ︸

I

−ωexe
(
v +

1

2

)2

︸
+ωeye

(
v +

1

2

)3

− ωeze
(
v +

1

2

)4

+ ...︷︷ ︸
II

,

(8)

with the vibrational quantum number v and the vibra-
tional constants ωe, ωexe, ωeye, and ωeze, which result
from the Dunham expansion [6]. A harmonic oscillator is
assumed (I), which needs to be corrected by higher order
terms (II), since Coulomb repulsion occurs if the nuclei
are closer, and dissociation if the distance between the
nuclei is enlarged. The rotational energy is defined by

Fv,J = BvJ (J + 1)︸ ︷︷ ︸
I

−DvJ
2 (J + 1)

2
+ ...︸ ︷︷ ︸

II
(9)

with the vibrational coupling constants

Bv = Be − αe
(
v+

1

2

)
+ γe

(
v+

1

2

)2

, (10)

Dv = De − βe
(
v+

1

2

)
. (11)

The spectroscopic constants Be, De, αe, βe, and γe re-
sult again from the Dunham expansion [6]. The model of
a rigid rotor (I) needs to be corrected since the distance
between the nuclei changes with an increasing rotational
quantum number J , thus the centrifugal distortion con-
stant De is implemented (II).

Line intensity. In order to obtain an emission spectrum,
the intensities of the single transition lines need to be de-
termined. Basically, the intensity of a single emission
line of a molecule results from the transition probability
due to quantum mechanical considerations and due to the
upper state density

ε =
16π3cν̄4

3
n′ (Re (r̄ν′,ν′′))

2
qν′,ν′′

SJ
′Λ′

J′′Λ′′

2J ′ + 1
. (12)

In general, the upper state density n′ is determined by
distribution functions. In a first approach, equilibrium
assumptions are made and Boltzmann distributions are
used. The transition probability is significantly influ-
enced by the Franck-Condon principle and the Franck-
Condon factor qν′,ν′′ , which are measures for the inten-
sity of a vibrational band. Another measure for the in-
tensity of a vibrational band is the transition dipole mo-
mentRe (r̄ν′,ν′′). The Hönl-London factor SJ

′Λ′

J′′Λ′′ , which
depends on the rotational quantum number J , controls
how the (2J + 1) allowed states are distributed among
the branches and, therefore, is a measure fo the intensity
of the rotational bands. The equations for calculating the
Hönl-London factors SJ

′Λ′

J′′Λ′′ can be taken from Herzberg
& Huber [7].

Line broadening. The line shape is approximated by
Voigt profiles, which are the convolution of Lorentzian
and Gaussian profile functions. Different broadening
mechanism are used analogously to the atomic bound-
bound radiation. Lorentzian profile widths values are cal-
culated for natural broadening, pressure broadening, and
a Stark contribution. Additionally, the Doppler broaden-
ing with a Gaussian profile function is considered, both
according to the equations in PARADE [24].

Results. Based on the calculated line position, line in-
tensity, and line shape, spectral emission coefficients are
calculated. Energy levels and transition probabilities are
taken from Laux [12] and are already implemented in
the PARADE database. Figure 5 shows a comparison
of three different radiating systems of molecular nitro-
gen, the Birge-Hopfield band in Fig. 5(a), the 1st Posi-
tive system in Fig. 5(b), and the 2nd Positive system in
Fig. 5(c) at an equilibrium temperature of 10 351 K and a
density of 3.38 · 1021 cm−3. An excellent agreement can
be stated for all transition bands.

2.3. Radiative Transfer Solver

After determining the emission coefficient per unit wave-
length ελ and the net absorption coefficient κλ in each
cell using the radiation solver as described above, the next
step is the calculation of radiative energy transfer within
the simulation domain. For this purpose, the change of
the radiation intensity in an arbitrary direction due to
emission and absorption of the surrounding gas in the
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em
is

si
on

,W
/m

3
/s
tr
/m

PARADE
PICLas

(a) N2 Birge-Hopfield
(
B1Π→ X1Σ

)

4000 8000 12000 16000 20000

0.30

0.60

0.90

1.20

1.50

·1011

λ, Å
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Figure 5: Comparison of molecular bound-bound radia-
tion in a single cell of calculations with PARADE and the
developed radiation solver.

simulation domain is investigated. This process is de-
scribed by the radiative transfer equation (RTE), which is
given by

dIλ (x)

ds
= ελ (x)− κλ (x) Iλ (x) . (13)

Here, I denotes the spectral radiation intensity depending
on the wavelength λ. Furthermore, s and x are the mea-
sure of distance and the coordinate, respectively; both
along the considered line of sight. Scattering effects
within the gas are neglected and only the steady solution
is considered due to the involved time scales.

Another quantity often used to describe the radiative
transfer process is the heat flux q,

q =

∫ ∞
0

∫
4π

I dωdλ, (14)

or alternatively the divergence of the heat flux

∇·q = ∇·
∫ ∞

0

∫
4π

I dωdλ =

∫ ∞
0

∫
4π

dI

ds
dωdλ. (15)

Since an analytical solution for the RTE exists only for
simple cases, the RTE usually has to be solved by means
of approximate models for radiative transfer. For this,
different algorithms with different levels of accuracy and
different computational effort are available. The main
problem of solving the RTE equation using a classical
numerical method, e.g. the finite element method, is the
huge number of wavelengths λ for which the equation
needs to be solved.

2.3.1. Monte Carlo method

An established method to solve the RTE is the Monte
Carlo method [8, 14], which is distinguished by a high ac-
curacy even for geometrically complex problems as well
as a high flexibility to spectral and spatial resolution with
the downside of high computational costs and statistical
fluctuations, due to the use of random numbers. Its main
idea is to trace a certain number of photon bundles with a
fixed amount of the overall energy through the simulation
domain, interacting with the surrounding gas by absorp-
tion. The initial properties of a photon bundle are the
position, the wavelength, and the direction.

Number of photon bundles. The number of emitted
photon bundles per cell are determined with two different
methods. In the first method, each photon bundle carries
the same amount of energy. A fixed number of photon
bundles is created for the whole domain. The number of
photon bundles ni per cell i is then defined by

ni =
Qi
Qtot

· ntot. (16)



Here, ntot is the fixed total number of photon bundles,
Qtot andQi are the total emitted radiation and the emitted
radiation per cell, respectively:

Qi = 4π

∫
Vi

∫ ∞
λ=0

ελ dλdV (17)

Qtot =
∑
Ncell

Qi. (18)

Therefore, each photon bundle carries an energy portion
of ∆Q = Qtot/ntot.

In the second method, an equal number of photon bundles
is emitted from each cell

ncell =
ntot
Ncell

. (19)

Therefore, each photon bundle in a cell i carries an energy
portion of ∆Q = Qi/ncell and, thus, the photon bundles
from different cells carry different energy portions.

Initial position. The photon bundles are distributed
randomly in the volume of their emitting cell.

Wavelength. The wavelength is determined randomly
by comparing a random number (0 ≤ Rλ ≤ 1) with the
distribution function Pλ for the radiation wavelength

Pλ =

∫ λ
0
ελdλ

∗∫∞
0
ελdλ

(20)

in the corresponding cell. λ is taken as the wavelength
for the photon bundle if Pλ > Rλ.

Direction. The directions of the photon bundles are de-
termined with two different methods. In the first method,
the normalized direction vectors d are generated by ran-
domly distributing points on a unit sphere, using two ran-
dom numbers R1 and R2 for each point:

α1 = 1− (2R1 − 1)2, α2 = π(2R2 − 1) (21)
d = (sin(α2)

√
α1, cos(α2)

√
α1, 2R1 − 1) (22)

Since the Monte Carlo method has the disadvantage of
statistical noise, especially for a low number of pho-
ton bundles, a second, different method is implemented.
Here, the direction vectors with a vector norm of one
are equally distributed over a unit sphere in a spiral con-
figuration [10] to ensure a coverage of all spatial direc-
tions. An exemplary comparison for 200 photon bun-
dles is shown in Fig. 6. In order to reduce computational
costs, it is beneficial to use the same spiral in each cell
and, therefore, the same number of photon bundles. To
prevent unwanted preferential directions due to the de-
terministic methods, the spheres are rotated by randomly
chosen, uniformly distributed angles.
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Figure 6: Variation of the direction distribution on the
surface of a unit sphere for 200 photons.

Absorption. Using its assigned initial position and its
direction, the optical path of each photon beam is calcu-
lated. Tracing of the bundle trajectories through the com-
putational domain requires an efficient ray tracer, which
is adopted from the particle tracking routines in PICLas
[15]. For each photon bundle, the RTE is solved along
the calculated optical path. Two different methods for the
absorption are investigated, a statistical and a determinis-
tic approach. Using the statistical approach, the total ab-
sorption along the optical path within a cell is calculated
and compared to a random number to determine whether
the photon bundle is absorbed or further considered. The
condition for the absorption of the bundle in cell i is

− log(Ra) < liκiλ (23)

with the traveled distance li in the cell, the local absorp-
tion coefficient κiλ and a uniformly distributed random
number Ra.

In contrast, the deterministic approach reduces the energy
of the photon bundle in every grid cell until the energy
reaches a minimum limit εQ and the photon bundle is ab-
sorbed. The new energy of a photon bundle after traveling
through a cell i is given by

∆Qnew = ∆Qe−l
iκiλ . (24)

2.3.2. Infinite cylinder test case

To verify the numerical implementation, the radiative
transfer is tested against the analytical solution of an
infinitely long cylinder filled with a gas emitting black
body radiation. Within the cylinder, the medium is as-
sumed to be homogeneous with a constant temperature
of T = 10 000 K and a constant absorption coefficient of
κ(r) = κ = 1 m−1. A cylinder with a radius of R = 1 m
and a length of l = 100 m is used as computational do-
main. Two different mesh sizes, which are shown in Ta-
ble 1, are used, one with 340 grid cells in the cross section
(coarse mesh) and the other one with four times as many
cells in the cross section (fine mesh), both with 400 cells
in the length direction. An analytical solution for a one-
dimensional radiative transfer of this test case is given
e.g. by Kesten [9] and Sakai et al. [23].



Table 1: Mesh parameters for the calculated semi-infinite
cylinder test case.

Mesh conditions
Refinement coarse fine

Cross-section

ncells 340x400 1360x400
Length, m 100
Radius, m 1
T,K 10000
κ,m−1 1

For a black body, the emission coefficient is given by

ε (λ) = Ip (λ, T ) , (25)

where Ip is the Planck distribution

Ip (λ, T ) =
2hc2

λ5

1

e
hc

λkBT − 1
. (26)

Here, h denotes the Planck constant, c the speed of light
in vacuum, and kB the Boltzmann constant.

The divergence of the heat flux for a constant black body
radiation and a constant absorption coefficient are shown
in Fig. 7. Both methods for the determination of the
number of photon bundles per cell were investigated but
showed only negligible differences due to locally equal
temperatures and, therefore, equal emission. However, in
a more anisotropic plasma, this needs to be tested again
since larger deviations for the two approaches are ex-
pected. Figure 7a compares the two absorption models
on the fine mesh for different numbers of photon bundles.
The deterministic approach leads to better results and less
fluctuations, therefore, this method is selected for further
calculations. The two implemented direction distribu-
tions are compared in Figs. 7b and 7c for the coarse and
the fine mesh, respectively. The approach with equally
distributed directions shows more precise results for any
number of photon bundles on both investigated meshes.
Figure 7d shows that this is still the case for small num-
bers of photons and correspondingly increased statistical
noise.

3. CONCLUSION

The radiative heat flux can be substantial during atmo-
spheric entries with high velocities. While conventional
CFD methods can generate a flow field solution, radiation
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Figure 7: Divergence of the heat flux of black body radi-
ation in a quasi-infinite cylinder.



transport solvers require more detailed information such
as the distribution functions within different internal de-
grees of freedom. Particle methods such as the DSMC
method can not only produce physically accurate results
for non-equilibrium conditions but offer a detailed insight
into a flow field. Consequently, the first steps toward cou-
pling the DSMC method and a radiation solver were de-
scribed. The radiation solver PARADE was found not
to be suitable for such a coupling, therefore, a new, direct
implementation of a radiation solver in the PICLas frame-
work has been initiated. As a first step, bound-bound ra-
diation for atoms and molecules has been realized. Re-
sults of cell-local computations were presented and com-
pared to results of PARADE. An excellent agreement can
be stated for both, atomic and molecular radiation. Ex-
emplary simulations have been conducted on the basis
of O, N , and three different bands of N2. Furthermore,
a concept for solving the radiative transfer equation us-
ing a Monte Carlo approach was presented. For a quasi-
infinite cylinder with black body radiation, a classical and
a noice-reducing approach with equally distributed direc-
tions of the photon bundles in each cell were compared,
showing more precise results with the latter method. Ad-
ditionally, a statistical and a deterministic method to han-
dle the photon bundle energy in terms of absorption were
investigated, with the deterministic method showing bet-
ter results.
In future work, continuum radiation will be implemented
into the radiation solver. Furthermore, the flow field
solver, the radiation solver, and the radiation transfer
solver will be coupled and applied to the calculation of
a reentry case. For this, as a first step, the developed radi-
ation solver will use temperatures and densities as input
parameters as presented in this paper. Next, a more so-
phisticated approach could be to sample the distribution
functions of each degree of freedom in each grid cell in-
stead of sampling the moments of the distribution func-
tions to evaluate macroscopic values.

ACKNOWLEDGMENTS

The authors gratefully acknowledge funding provided
by Airbus Defence and Space, by ArianeGroup and by
the Deutsche Forschungsgemeinschaft (DFG) within the
project ”Partikelverfahren mit Strahlungslöser zur Sim-
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