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Motivation and Goal
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— Why studying laser-plasma interactions (LP1)?

[Scientiﬁc motivation (very interesting problem)]

e Understand the inter-play among diverse physical phenomena (e.g.,
ionization, self-focusing, refraction, ablation) occurring when a plasma
is formed by focusing a laser beam onto a target material
(e.g., gas, solid)

[Lasers have many applications in engineering}

e Plasma-coupled combustion
e Laser-induced breakdown spectroscopy (LIBS)
e Laser welding

= last but not least, modeling of LPI poses challenges which are also
faced in re-entry aerothermodynamics (possible mutual benefits)

T
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— Problem definition: optical breakdown of gases

Laser beam
Focal region

[0) xT

{Large spectrum of time-scales makes modeling of LPI chaIIenging!}
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— Problem definition: optical breakdown of gases

Production of priming electrons via MPI

‘A+mhpu—>A++e_‘

Laser beam

Focal region

[0) xT

{Large spectrum of time-scales makes modeling of LPI chaIIenging!}
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— Problem definition: optical breakdown of gases

Energy absorption via inverse Bremsstrahlung

Laser beam

[0) xT

{Large spectrum of time-scales makes modeling of LPI chaIIenging!}
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— Problem definition: optical breakdown of gases

Energy absorption via inverse Bremsstrahlung

t~10"9s
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Laser beam (¢ >¢)

Te >>Tn

[0) xT

{Large spectrum of time-scales makes modeling of LPI chaIIenging!}
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— Problem definition: optical breakdown of gases

Cascade (avalanche) ionization

T

Laser beam

[0) xT

{Large spectrum of time-scales makes modeling of LPI chaIIenging!}
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— Problem definition: optical breakdown of gases

Cascade (avalanche) ionization

‘A—&—e‘—)A*’—i—e_—&-e_

e

ne < exp(—t/m)

t

Laser beam T, >> T,

[0) xT

{Large spectrum of time-scales makes modeling of LPI chaIIenging!}
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— Problem definition: optical breakdown of gases

Shock formation and propagation

[Large spectrum of time-scales makes modeling of LPI chaIIenging!}
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— Problem definition: optical breakdown of gases

Shock formation and propagation

[0) x

[Large spectrum of time-scales makes modeling of LPI chaIIenging!}
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— Problem definition: optical breakdown of gases

Shock formation and propagation
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[Large spectrum of time-scales makes modeling of LPI chaIIenging!}
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= Objective

Goal

» construct and validate a predictive physics-based model for optical

breakdown of gases
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Physico-chemical Modeling
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= Physical model (i): material gas
Non-Local Thermodynamic Equilibrium (NLTE) fluid model

[Two—temperature model: T, for heavy-particles, T, for free-electrons

Governing equations: NLTE Navier-Stokes
e Mass continuity (for each species)

Ops
ot

e Global momentum

dpv
%—l—V(pv@v—&—pI):VT

e Global energy

TV (psv +Js) = w® + wi™

OpE
Ot

o Free-electron + vibrational + electronic excitation energy

+V - (pvH) =V:(tv) — V- -q+ Q™"

ap@ive + V: (pvewe) = —peV - v — V- que + Q5" + Q527
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= Physical model (ii): radiation field

Possible approaches (particle and wave; classical electrodynamics)]

Radiative Transfer Equation (RTE; Kinetic Theory of Photons)

{Q'VI)\:&?)\—K)\I)\}

+ Straightforward to include radiative processes (e.g., line emission)

x Formulation becomes much more complex for refractive and dispersive
media, and when accounting for scattering and polarization

x No coherence and no wave phenomena (e.g., diffraction, interference)

Maxwell’s equations

0B oD

+ Wave behavior of light taken into account
x More difficult to include effects radiative processes
x Very fine grids required for optical region of the EM spectrum
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— RTE formulation

Splitting of intensity

L=I+1I

e IS: collimated part (e.g., laser)
o I{: diffuse/remnant part (i.e., plasma response)
Radiation transport problem is now split in two uncoupled RTEs
» Collimated (only for laser wavelength A = ;)
(- VI = —r) ]
» Diffuse (whole spectrum)

{ﬂVﬁ:q—mﬁJ

= the two RTEs may be solved with different numerical methods (e.g.,
ray-tracing for collimated and Finite Volume for diffuse)

T
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— = RTE for collimated beam

Q. VI§ = —k§7T5, kY = Z es (A, Te) nens |1 — exp
sEH

(

hpc
Ve I

with QLF(A, T,) being the free-free absorption cross-section*

[ Electron-ion (Coulomb potential)}

. 4 | or 3 7245
FF ANTL) = — _ s e
QeS( e) 3\ 3meksTe (47‘(‘60)3 hpctme

[Electron—neutral (soft photon Iimit)}

“+oo
QTN T.) = / (N ) (e, Te) de
0

203 1h h 1h
ogg(x,e)z%%m(w—ic) 2(€+LC) & (EJr*LC)
6m2¢g hpctmy 2 A A 2 A

* Johnston, R. R., J. Quant. Spectrosc. Radiat. Transf. 7, 815, 1967
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_——_ RTE for laser beam: flux tube formulation

» This model reproduces the increase of the intensity/heat-flux towards
the focal plane

= alternative would be to solve Maxwell’s equations

Collimated beam
a-ixg=1I3

‘\n / N fzvqx-ndﬂzf/vn,\q,\dV
@\ A(s + As) l

(s + As) A(s + As) — qa(s) A(s) = —kra(s) gr(s") A(s") As

s<s < s+ As

A(s) Energy conservation

OIS A
8)\ = —rrI{ A, ds~dx (par-axial approximation®)
15

* Marcuse, D Light Transmission Optics, van Nostrand Reinhold Company, 1982
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—= verification/application for a Gaussian beam (focal plane at r =0)

» Beam discretized using a finite number of rays/bundles

» Area distribution, A(x), based on specified focal radius, focal length

and beam diameter

> Left: heat-flux/intensity map

> Right: one-dimensional slices (symbols denote numerical s

g [W/m?]

1E+13
9E+12
SE+12
TE+I12
6E+12
SE+12
4E+12
3E+12
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— Radiative source terms

Once the intensity known one may compute radiative mass and energy
source terms (these provide coupling between gas and radiation)

» Multi-photon-ionization (MPI) [s + kshpry = sT +e7]

MPIL . . MPI k
witl = —mgng, nNs=mnsos (Y )IS

mpi rate coeff.

P =N ik hert, QO =Y (I — kshern)
SsEH SEH

» Inverse Bremsstrahlung (FF)

QFF _ QFF — K/FFI)\I}

= in the literature MPI is often thought to be important only for
formation of priming electrons (this is not the case as simulations show)
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Numerical Method and CFD tool
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— Numerical method (method-of-lines)

[Space discretization: Cell-Centered Finite Volume method]

[Time integration: Implicit/Explicit (IMEX) dual time—stepping}

e {: physical time
e 7: addition time variable to march between discrete physical time-levels

oU,;;  0U;,
Vij ( e Bt]> = (Ci; + Dij +S4)

i1 e -l IMEX approach

» Implicit: diffusion (D) + source
terms (S) due to kinetics

» Explicit: convection (C)
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= Two-parameter family (0, ¢) implicit integrator' —2

> n: refers to the physical time ¢

> k: refers to the additional time-variable 7

UL gtk A+ UETHEH — (14 20) UL, 4+ gUTT!

A’Tij i At -

Vi

9<D?j+1’k+1 + SZ+1,k+1 +CZ~+1'k> + (1 - O)Rfj

implicit explicit

= solution found via linearization around U1k (leads to a sparse
system). At convergence (i.e., U"t1LA+1 ~ UntLF) one finds

1+ )UET — (14 2¢)UZ + oUT!
Vij [( i (At Y 2| =6R2F + (1- 6)RD

L Pulliam, T. H., AIAA 1993-3360

2 Munafd, A., Alberti, A., Pantano, Freund, J. B., Panesi, M., in preparation for submission

to J. Comput. Phys.
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= CFL tool: HEGEL

High fidElity tool for maGnEto gas dynamics simuLations

» Originally developed in the AR department at UIUC
[NASA grant NNX15AQ57A]
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- Language

» Source code written in modern Fortran 90/2008

Parallelization

» Domain decomposition via MPI + PETSC (e.g., DMDA,Mat, Vec)

Discretization
» Space: cell centered Finite Volume method
e High-order reconstruction: MUSCL, WENO5, MP5
» Time: explicit, implicit, splitting
e Forward Euler, RK4, TVD RK2/3
e Backward Euler (full matrix and DPLR)
e Three-point backward + dual-time stepping
e Operator splitting (e.g., Strang)
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Applications
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L g
— Laser induced breakdown in molecular Oxygen
Simulation parameters

» Mixture: Oy (+ electrons and multiply charged ions)
> pa = 99.4kPa, T, = 293.5K [quiescent gas]
> B =50mJ, \} =532nm, FWHM = 7.5ns, rp = 7.5pum

[ Degree of ionization J
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» | Two plasma waves observed: forward and backward [t = 5 ns]}

0 0.05
X [mm] X [mm]

Proposed explanation in the literature*

» Backward: breakdown wave (formulated originally by Raizer)
» Forward: breakdown wave due to beam re-focusing

* N. Tsuda, J. Yamada, J. Appl. Phys. 87, 2122, 2000
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— Proposed plasma wave mechanism
Radiation supported wave

> [Triggered by MPI]

> [Sustained by IE and FF absorption]

6 |
10 1 --- MPI[t =4.2ns]
1 —o—1IE [t=42ny |
105 4 --=--MPI[t = 5ns]
n 1 —o—IE [t=5ns
» ]
710t
ER
R A
s 108
S ] / ;
S i I_ AY \
X 102 4 oy R
© 3 2 ‘ *
2 ] S R
101 ] ,_z II '\.
E .'. / )
B K4 ’ H
v ’ N
10° e — T \
—-03 —-02 -01 0 0.1
 [mm]
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— Plasma boundary evolution

- [+t dagr]

e Left: free-electron temperature

e Right: Schlieren-like image from density gradient

T T
!

20 ns

2.5 mm
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— Comparison with experimental emission images =

» | Experiments from Jon Retter (UIUC, now SNL)}

HEGEL

0O, LIB
pa = 99.4 kPa
T, = 293.5 K

Elaser = 50 mJ Experiment o

LASER 1 mm
%
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— Post-breakdown evolution
»

0.1 0.2 0.3 04 0.5 0.6 0.7 0.8 0.9 1

11 12 1.3 14 15

Shock front
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— Stability considerations (CFL and VNN maps) =

[t —10ns, At=05 ps}

» CFL < 1 whereas VNN above linear stability bounds (0.5) due to
large values of thermal conductivity of free-electrons

E— ] [
0005 0.01 0015 0.02 0025 003 0.035 004 0.045 005 0.055 0204 0608 1 12 14 1.6 1.8 2 22 24 26 28

r [mm]

-0.4 -0.2 0.2 0.4

-0.4 -0.2 0 0.2 0.4

x [mm] . . . . x[mm] . .
= these results support the idea of treating diffusion implicit while leaving
convection explicit
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Conclusions
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Accomplishments

» Developed physics-based model for LPI

> Proposed plasma wave mechanism to explain observed forward and
backward plasma waves

[ Future/on-going work

> Validation through comparison with experiments

= Alberti et al. talk [28] (Tuesday March 26'")
» Assessment of plasma wave mechanism

» Add non-collimated radiation (e.g., line/continuum emission)

= Sahai et al. talk [41] (Wednesday March 27%)

» Develop Maxwell solver for laser beam
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Thank you for your attention,
Questions?

ﬂ BUAYE Posrmercoupled Combustion
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