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Why studying laser-plasma interactions (LPI)?

Scientific motivation (very interesting problem)

• Understand the inter-play among diverse physical phenomena (e.g.,
ionization, self-focusing, refraction, ablation) occurring when a plasma
is formed by focusing a laser beam onto a target material
(e.g., gas, solid)

Lasers have many applications in engineering

• Plasma-coupled combustion

• Laser-induced breakdown spectroscopy (LIBS)

• Laser welding

• . . .

⇒ last but not least, modeling of LPI poses challenges which are also
faced in re-entry aerothermodynamics (possible mutual benefits)
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Problem definition: optical breakdown of gases

Large spectrum of time-scales makes modeling of LPI challenging!
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Objective

Goal

◮ construct and validate a predictive physics-based model for optical
breakdown of gases

Laser discharge (M. Nishihara, UIUC)
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Physical model (i): material gas
Non-Local Thermodynamic Equilibrium (NLTE) fluid model

Two-temperature model: Th for heavy-particles, Te for free-electrons

Governing equations: NLTE Navier-Stokes

• Mass continuity (for each species)

∂ρs

∂t
+∇ · (ρsv + Js) = ωcol

s + ωrad

s

• Global momentum

∂ρv

∂t
+∇(ρv ⊗ v + pI) = ∇τ

• Global energy

∂ρE

∂t
+∇ · (ρvH) = ∇:(τv)−∇ · q+ Ωrad

• Free-electron + vibrational + electronic excitation energy

∂ρeve

∂t
+∇ · (ρveve) = −pe∇ · v −∇ · qve + Ωcol

ve +Ωrad

ve
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Physical model (ii): radiation field

Possible approaches (particle and wave; classical electrodynamics)

Radiative Transfer Equation (RTE; Kinetic Theory of Photons)

Ω · ∇Iλ = ελ − κλ Iλ

+ Straightforward to include radiative processes (e.g., line emission)

x Formulation becomes much more complex for refractive and dispersive
media, and when accounting for scattering and polarization

x No coherence and no wave phenomena (e.g., diffraction, interference)

Maxwell’s equations

∇×E = −
∂B

∂t
, ∇×H = J+

∂D

∂t

+ Wave behavior of light taken into account

x More difficult to include effects radiative processes

x Very fine grids required for optical region of the EM spectrum
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RTE formulation

Splitting of intensity

Iλ = Icλ + Idλ

• Ic
λ
: collimated part (e.g., laser)

• Id
λ
: diffuse/remnant part (i.e., plasma response)

Radiation transport problem is now split in two uncoupled RTEs

◮ Collimated (only for laser wavelength λ = λl) [this work]

Ω · ∇Icλ = −κλ I
c
λ

◮ Diffuse (whole spectrum) [on-going]

Ω · ∇Idλ = ελ − κλ I
d
λ

⇒ the two RTEs may be solved with different numerical methods (e.g.,
ray-tracing for collimated and Finite Volume for diffuse)
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⇒ RTE for collimated beam

Ω · ∇Icλ = −κffλ Icλ, κffλ =
∑

s∈H

Qff

es (λ, Te)nens

[

1− exp

(
hpc

kbTe

)]

with Qff

es (λ, Te) being the free-free absorption cross-section∗

Electron-ion (Coulomb potential)

Qff

es(λ, Te) =
4

3

√

2π

3mekbTe

λ3

(4πǫ0)
3

Z2
s q

6
e

hpc4me

Electron-neutral (soft photon limit)

Qff

es(λ, Te) =

+∞∫

0

σff

es(λ, ε) f
m(ε, Te) dε

σff

es(λ, ǫ) ≃
q2eλ

3

6π2ǫ0 hpc4m
3/2
e

(

ε+
1

2

hpc

λ

)
√

2

(

ε+
hpc

λ

)

Q1
es

(

ε+
1

2

hpc

λ

)

∗ Johnston, R. R., J. Quant. Spectrosc. Radiat. Transf. 7, 815, 1967
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RTE for laser beam: flux tube formulation
◮ This model reproduces the increase of the intensity/heat-flux towards

the focal plane

⇒ alternative would be to solve Maxwell’s equations [on-going]

∂IcλA

∂x
= −κλ I

c
λA, ds ≃ dx (par-axial approximation∗)

∗ Marcuse, D., Light Transmission Optics, van Nostrand Reinhold Company, 1982
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⇒ verification/application for a Gaussian beam (focal plane at r = 0)

◮ Beam discretized using a finite number of rays/bundles

◮ Area distribution, A(x), based on specified focal radius, focal length
and beam diameter

◮ Left: heat-flux/intensity map

◮ Right: one-dimensional slices (symbols denote numerical solution)
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Radiative source terms

Once the intensity known one may compute radiative mass and energy
source terms (these provide coupling between gas and radiation)

◮ Multi-photon-ionization (MPI) [s+ kshpνl = s+ + e−]

ωmpi

s = −ms ṅs, ṅs = ns σ
mpi

s (νl)I
ks
λl

︸ ︷︷ ︸

mpi rate coeff.

Ωmpi =
∑

s∈H

ṅs ks hpνl, Ωmpi

ve =
∑

s∈H

ṅs(Is − kshpνl)

◮ Inverse Bremsstrahlung (FF)

Ωff = Ωff

ve = κffλl
Iλl

⇒ in the literature MPI is often thought to be important only for
formation of priming electrons (this is not the case as simulations show)
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Numerical method (method-of-lines)

Space discretization: Cell-Centered Finite Volume method

Time integration: Implicit/Explicit (IMEX) dual time-stepping

• t: physical time

• τ : addition time variable to march between discrete physical time-levels

Vij

(
∂Uij

∂τ
+

∂Uij

∂t

)

=
(
Cij +Dij + Sij

)

︸ ︷︷ ︸

Rij

IMEX approach

◮ Implicit: diffusion (D) + source
terms (S) due to kinetics

◮ Explicit: convection (C)
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Two-parameter family (θ, φ) implicit integrator1−2

◮ n: refers to the physical time t

◮ k: refers to the additional time-variable τ

Vij




U

n+1,k+1
ij −U

n+1,k
ij

∆τij



+ Vij




(1 + φ)Un+1,k+1

ij − (1 + 2φ)Un
ij + φUn−1

ij

∆t



 =

θ
(

D
n+1,k+1
ij + S

n+1,k+1
ij

︸ ︷︷ ︸

implicit

+C
n+1,k
ij

︸ ︷︷ ︸

explicit

)

+ (1− θ)Rn
ij

⇒ solution found via linearization around U
n+1,k (leads to a sparse

system). At convergence (i.e., Un+1,k+1 ≃ U
n+1,k) one finds

Vij




(1 + φ)Un+1

ij − (1 + 2φ)Un
ij + φUn−1

ij

∆t



 = θRn+1
ij + (1− θ)Rn

ij

1 Pulliam, T. H., AIAA 1993–3360
2 Munafò, A., Alberti, A., Pantano, Freund, J. B., Panesi, M., in preparation for submission

to J. Comput. Phys.
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CFL tool: HEGEL

High fidElity tool for maGnEto gas dynamics simuLations

◮ Originally developed in the AR department at UIUC

[NASA grant NNX15AQ57A]
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Language

◮ Source code written in modern Fortran 90/2008

Parallelization

◮ Domain decomposition via MPI + PETSC (e.g., DMDA,Mat,Vec)

Discretization

◮ Space: cell centered Finite Volume method

• High-order reconstruction: MUSCL, WENO5, MP5

◮ Time: explicit, implicit, splitting

• Forward Euler, RK4, TVD RK2/3

• Backward Euler (full matrix and DPLR)

• Three-point backward + dual-time stepping

• Operator splitting (e.g., Strang)
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Laser induced breakdown in molecular Oxygen
Simulation parameters

◮ Mixture: O2 (+ electrons and multiply charged ions)

◮ pa = 99.4 kPa, Ta = 293.5K [quiescent gas]

◮ El = 50mJ, λl = 532 nm, FWHM = 7.5 ns, rF = 7.5 µm

Degree of ionization
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◮ Two plasma waves observed: forward and backward [t = 5 ns]

Proposed explanation in the literature∗

◮ Backward: breakdown wave (formulated originally by Raizer)

◮ Forward: breakdown wave due to beam re-focusing
∗ N. Tsuda, J. Yamada, J. Appl. Phys. 87, 2122, 2000
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Proposed plasma wave mechanism
Radiation supported wave

◮ Triggered by MPI

◮ Sustained by IE and FF absorption
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Plasma boundary evolution

◮ x-t diagram

• Left: free-electron temperature

• Right: Schlieren-like image from density gradient
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Comparison with experimental emission images

◮ Experiments from Jon Retter (UIUC, now SNL)
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Post-breakdown evolution
◮ t ≃ 1 µs
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Stability considerations (CFL and VNN maps)

◮ t = 10 ns, ∆t = 0.5 ps

◮ CFL ≪ 1 whereas VNN above linear stability bounds (0.5) due to
large values of thermal conductivity of free-electrons

⇒ these results support the idea of treating diffusion implicit while leaving
convection explicit
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Accomplishments

◮ Developed physics-based model for LPI

◮ Proposed plasma wave mechanism to explain observed forward and
backward plasma waves

Future/on-going work

◮ Validation through comparison with experiments

⇒ Alberti et al. talk [28] (Tuesday March 26th)

◮ Assessment of plasma wave mechanism

◮ Add non-collimated radiation (e.g., line/continuum emission)

⇒ Sahai et al. talk [41] (Wednesday March 27th)

◮ Develop Maxwell solver for laser beam
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Thank you for your attention,
Questions?
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