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Introduction

Introduction

@ Coupled flow-radiation calculations crucial for accurately
characterizing properties for different applications:

—————

Hypersonic Planetary Entry
Sahai et al., AIAA Scitech 2019.
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Introduction

Introduction

@ Coupled flow-radiation calculations crucial for accurately
characterizing properties for different applications:

2
-
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Arc-heated Flows
Sahai et al., Plasma Sources Science and Technology 2017.
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Introduction

Introduction

@ Coupled flow-radiation calculations crucial for accurately
characterizing properties for different applications:

Laser-plasma Interaction
Alberti et al., AIAA Scitech 2019.
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Objective

“Development of a physics-based reduced-order framework for

Introduction Objective

solving non-equilibrium chemical kinetics and radiation for
complex flow problems.”
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Introduction Objective

Objective

“Development of a physics-based reduced-order framework for
solving non-equilibrium chemical kinetics and radiation for
complex flow problems.”

Thermo-
Chemical
Models

CFD \ >
Radiation
Models

“Model-reduction imperative for resolving two-way coupling
between thermochemical and radiation models.” J
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Objective

@ Three key challenges for performing radiation calculations in
conjunction with CFD:

— Evolve efficient / accurate reduced-order models to capture spectral
variance in properties.

Wall Flux [W/mZ.um]

107
0 5 10 15 20 25
Wavelength [um]

Spectrally varying radiative wall heat flux from CO4 for a 1-D problem

— Solve radiative transfer equations (RTEs) for 3D unstructured meshes.
— Self-consistent radiation-flow coupling to account for non-local

absorption.
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Outline

e Spectral Reduced-order Models
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Spectral Reduced-order Models Outline

Reduced-order Models for Spectral Properties
@ Monochromatic steady-state RTE describing the spectral intensity I,
corresponding to frequency v in the € direction:
Q.VI,(x,Q) = E, —o,1,(x,0Q)

@ Radiative properties can vary rapidly with frequency.

@ Line-by-line (LBL) approach entails computing intensities for
individual frequencies followed by integration in frequency space to
obtain total quantities:

I(x,Q) = / I, dv
Vmin
@ This approach, although exceedingly accurate, is impractical for
online radiation calculations on complex 3D systems.

@ Reduced-order models imperative for reducing cost of evaluating
properties (E,, 0,) and then solving RTEs.
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Spectral Reduced-order Models Outline

Spectral Reduced-order Models

@ First Step: Methodology for creating reduced-order groups for which
RTEs are solved (not large number of original frequencies):
— Multi-band Multi-bin based on Planck averaging (Rosseland mean).
— Method of homogenization.
— Correlated / Scaled k-distributions

@ The last two methods rely on statistics (not assumed spectral
distributions) and are said to work more reliably for a broader set of
physical situations.

@ Second Step: Investigate physical criteria and subsequent grouping
strategy for identifying which LBL frequencies need to be clustered
together (analogous to work on StS kinetics).

[1] Sahai et al., Adaptive coarse graining method for energy transfer and dissociation
kinetics of polyatomic species, J. Chem. Phys. (2017).
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General Methodology for Spectral Reduced-order Models
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Bands based on frequency and bins based on opacity

@ Model-reduction techniques differ in what “average” properties are
prescribed for groups (band/bin combination).

@ More sophisticated clustering approaches expected to change this
simple frequency — opacity (continuous interval) grouping paradigm.
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HETE AR T
Multi-band Multi-bin using Planck Averaging

@ This approach assumes a frequency-wise intensity distribution while
computing the representative 6 for given group i:

o; = /aylydy//l,,dl/

@ Setting I, equal to Planck distribution B, (T") ensures that spectral
radiance within a group maximizes entropy (analogous to Boltzmann
distribution within chemical bins).

@ The maximum entropy formulation becomes more consistent if

assumed spectral radiance satisfies constraint based on total group
intensity I;:

I = / I dv = / By(T,qq) dv

@ Re-computing T'..q (# T'100) €nsures that integral of Planck weights
for spectral averaging matches group intensity.
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Theory of Homogenization (Haut et al., JQSRT, 2017)

@ Homogenization discards assumed spectral distributions in favor of
statistics to derive “averaged” 4;.

@ The method relies on estimating the probability distribution p(c,,)
(Young measure) of the value of the absorption coefficient ay(¢>0).

et —/ I(oy) p(o,) doy,
0

@ Young measure is discretized to obtain the conventional multi-band
multi-bin reduced-order model. This involves computing p;; which is
the probability of:

0j <oy, <0jp1 YV VE WV, Vi)

@ Discretized Young measure p;; is essentially the probability of being
in the ¥ frequency band and j** opacity bin.

@ Total intensity is then computed using a weighted average:

Lot = Z sz‘j I;;
J

7
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Reordered k-distribution
Reordered k-distribution (Modest et al., JQSRT, 2003)

@ Reodered k-distributions strictly applicable to equilibrium radiation
(oscillations induced by absorption coefficients).

@ Non-equilibrium radiation modeled using I = E(v,¢) / o(v, ¢)
@ Original v-dependent RTE reordered in k-space (absorption
coefficient values):

I = /OOO 1, 8(k — 0u(,)) dv

@ Non-equilibrium emission-weighted probability density function is
defined for frequency band ::

F(&. 0y k) = [/0 OOIS”(qb)é(k—oV(cbO))dv] / ()

@ RTE in the k-space:
Q. V-[k = k*(ga k;) f(?v?oa k:) Iineq(é) - k*(¢7 k) Ik
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Spectral Reduced-order Models Results

Galileo

@ Jupiter entry with ablation products, peak heating point:
— Us =41.6 km/s
- Poo = 3.49 x 107* kg/m3
@ Strong atomic H lines and atomic continuum from H provide dominant
emission from the inviscid region.
@ C3 and C2H, and H2 molecular band systems provide boundary layer
absorption.
@ Original LBL calculations require ~ O(10°) frequencies.

stagnation-line
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Spectral Reduced-order Models Results

Galileo

@ Reduced-order models based on 25 bands x 25 bins.
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Spectral Reduced-order Models Results

Galileo
@ Reduced-order models based on 25 bands x 50 bins.
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Spectral Reduced-order Models

Stardust

@ Earth entry:
— Us =11.69 km/s
- Poo = 1.05 x 107* kg/m3
@ Atomic N lines are the dominant contributors.
@ Molecular bands and the atomic continuum are also included.

@ Original LBL calculations require ~ O(10°) frequencies.
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Stardust

@ Reduced-order models based on 25 bands x 25 bins.
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Spectral Reduced-order Models Results

Stardust

@ Reduced-order models based on 25 bands x 50 bins.
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Meteor Precursor

@ Earth entry, no ablation products:
- Us =20km/s
- Poo = 9.78 x 107* kg/m3

@ Strong N and O lines dominate.

@ Original LBL calculations require ~ O(10°) frequencies.

@ LOS located along the stagnation line

Sahai et al. 3D Non-equilibrium Radiation



Spectral Reduced-order Models Results

Meteor Precursor
@ Reduced-order models based on 25 bands x 25 bins.
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Spectral Reduced-order Models Results

Meteor Precursor

@ Reduced-order models based on 25 bands x 50 bins.
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Outline

© Radiation Binning Strategy
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Radiation Binning Strategy for MBOB Framework

@ Grouping criteria for radiation not straightforward (unlike state-to-state
chemistry) because spectral intensities uncoupled.
@ Conventional grouping focuses on frequency bands + opacity bins.

@ Non-intuitive grouping criteria can be evolved by comparing LBL and
reduced-order LOS solutions:

I,(s) = 1,(0)ex o, ds'
0
+ / E, exp (— / oy ds") ds
0 s/

@ Reduced-order group intensity (I;; = [ I,dv) is unpacked to obtain
frequency-wise intensity:

0

B,
I, = I
v SR,
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Radiation Binning Strategy for MBOB Framework

@ Medium assumed to be homogeneous in order to simplify analysis.

B S S
fB 7 E;; exp< // oij ds”) = FE,exp <— // oy ds">

@ Term-by-term comparison of the Taylor series expansion allows group
and spectral properties to be compared:

B
Fuouy B4 — v
1%
E E E, o2
v v ,,ag = ... = Constant

Eiij N Eij Oij Eij g;
@ 0, = 0;; = Constant is a trivial solution — rationale for regular opacity
binning.
@ Generalized approach — bands based on E,, and bins based on
E,o,.
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Stardust

@ Reduced-order models based on 20 bands x 20 bins.
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Stardust

@ Reduced-order models based on 25 bands x 25 bins.
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Radiation Binning Strategy

Stardust

@ Reduced-order models based on 25 bands x 25 bins.
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Radiation Binning Strategy

Meteor
@ Reduced-order models based on 10 bands x 10 bins.
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Radiation Binning Strategy

Meteor

@ Reduced-order models based on 25 bands x 25 bins.
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Radiation Binning Strategy

Meteor

@ Reduced-order models based on 25 bands x 25 bins.
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Outline

© 3DRTE

Sahai et al. 3D Non-equilibrium Radiation



3D RTE Outline

Coupled Radiation-Flow Solutions for 3D Meshes

@ Efficient spectral reduced-order models and RTE solution
methodology key for managing computational loads.

@ Angular integration performed with focus on reducing the number of
rays required for accurate solution.

@ Total radiative heat flux (and its divergence) computed using a
Gaussian / Lebedev type angular quadrature:

q = / I,QdQ =) w1 Q"
4m m

@ FEM/FVM based discretization avoids concomitant challenges
associated with ray tracing.

@ Angularly / spatially resolved radiation allows species continuity
source terms to be computed while accounting for non-local
absorption.
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Finite Volume based RTE Solver

@ A finite-volume formulation is obtained by integrating the RTE in
direction n over an element (and then discretizing it):

Y n.8'1f = -6,IV.
f

@ Flux summation is evaluated by first-order upwinding:

o I: forn.Sf >0
Y Ireieh ) forn.ST <0

Z n.SI(r,)

n.S<0

Z n.S+o(re) Qe

n.S>0

I(re) = —

@ Sparse linear system re-ordered into lower triangular system by
sweeping the mesh according to an advance-order list.
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Self-consistent Radiation-flow Coupling

@ Two-way coupling — Flowfield solution passed on to radiation solver
while radiative field information (source terms) provided to flow solver.

@ Rate constants for radiative processes involving emission and
absorption (no escape factor assumption) between species [ and «

are: _
o= e [
’ puNA

g = M / (abu 7{ mn) dv
' Pl NA 47

@ Source terms for species continuity and energy equations:

et = N (—Kfh + Kip)
Vu|u#l
Qe = _v.qu = —v./% I, QdQdv
47
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Mars 2020 3D Wake Flows: CO, — M StS Model

@ 9,056 vibrational levels for ground electronic state of CO,.

@ Each level defined using 4 modes: 1 symmetric stretching, 2
degenerate bending, and 1 asymmetric stretching.

@ CO- molecule has multiple pathways for vibrational relaxation
(~ 100, 000 possible transitions in current model):
VT, COQ(Ul,vg,Ug) + M <—>COQ(U1,U2:E1,213)+M
VWi_y 002(2)1,2)2, '03) + M<+— COQ('Ul + 1,09 F 2,’03) +M
VVy_3 COQ(Ul,UQ, 1)3) + M<+— COQ('Ul, vy £ 3,v3 F 1) +M
VWi_9_3 : COs2(vi,ve,v3) + M+— COg(v1 £ 1,9 £ 1,3 F1)+ M
@ Dissociation/recombination occurs as follows:
CO2(v1,v2,v3) + M+—CO + O + M

[1] I. Armenise, E.V. Kustova. State-to-state models for CO, molecules: From the theory
to an application to hypersonic boundary layers. Chemical Physics 415 (2013).
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Mars Entry Wake Flows Coarse Grain Method

Mars 2020 3D Wake Flows: Coarse Grain Method

@ State to State
@ Reduced Model

Group 2

Log(Ny/g;)

Group 1

Energy

Sahai et al.

3D Non-equilibrium Radiation March 27, 2019

26/31



Mars 2020 3D Wake Flows: Computational Setup

Voo [km/s] poo [kg/m?] Too [K] o [K]

5.46 8.44E-5 144 15.26
4.64 1.05E-4 184 15.65
3.89 1.84E-3 193 15.88
1) Trajectory points considered 2) Mars 2020 vehicle

@ Three-dimensional Mars 2020 mesh with ~ 2 x 10 mesh elements
and 170 quadrature directions.

@ Gas mixture includes: 10 CO5 Bins, CO, O,, C, O.

@ Compare flowfields (US3D) and resultant IR radiation (NERO) for 1-T
/ 2-T Boltzmann and reduced-order StS models.

@ Radiative transitions in 1.5, 2.7, and 4.5 um bands are considered.
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Mars Entry Wake Flows

Mars 2020 Wake Flows: V., = 3.89 km/s
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Mars Entry Wake Flows

Mars 2020 Wake Flows: V., = 3.89 km/s
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Mars 2020 Wake Flows: V., = 3.89 km/s
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Mars 2020 Wake Flows: V., = 3.89 km/s
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Mars 2020 Wake Flows: V, = 3.89 km/s
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Summary and Future Work

Summary

@ MBOB with Planck-averaging just as accurate as statistics-based
model reduction methods (that still rely on reordering o).

@ Non-intuitive grouping strategies crucial for improving predictions for
total and spectral quantities.

@ Efficiency gains through reduced-order spectral models and simpler
angular/spatial discretization enable coupled radiation-flow
calculations even for complex 3D geometries.

@ Complete characterization of CO, wake flows using reduced-order
thermochemistry bins and self-consistent radiation coupling.

Future Work
@ Experiment with other spatial discretization schemes for RTEs.

@ Perform flow-radiation coupled calculations for other sytems.

v
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Homogenization: Extension to Non-Equilibrium Radiation

@ Original framework developed only for equilibrium radiation with
fluctuations induced solely by absorption coefficients.

@ Non-equilibrium emission intensity : I = E(v, ¢) / o(v, ¢)

@ Probability distribution computed using weighted integrals (for
reference state):

Pij = /I[}eqdu / /Il’}eqdu

vEbin j vEband i

@ Bin opacity computed using weighted average:

O35 = /0(1/, T) I d]// /];eq dv = /E,, dZ// /E,,/o—l, dv

veEbin j veEbin j veEbin j vebin j
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Homgenization: Extension to Non-Equilibrium Radiation

@ Bin-wise source term can be computed in manner analogous to
equilibrium radiation.

@ Tested multiple forms for the source term — most accurate based on
conserving total emission:

[ E,/o,dv [E, dv
E" _ E d « vEband i _ vEbin j
“ / v fEV/UV dv p’Lj
vebin j vEbin j Ref

@ 0;; and L;; can be pre-computed for different thermodynamic states.

@ Computing total intensities for individual bands requires solving the
RTEs for constituent bins (with properties o;; and E;;) and then
averaging using p;; as weights.

Sahai et al. 3D Non-equilibrium Radiation March 27, 2019 29/31



Reordered k-distribution

@ k-distribution based on f can be ill-behaved, making integration in &
space difficult.

@ Transformation into smoother g-space performed through division by

F(bg: 60 B):
QVIQ = k*(?’@()?g) a(???w.g) Iineq(é) - k*(gagwk) Ig
Ig = Ik/f(?ga?()?k)
k
oy ok = [ 1y
a(?véovk) = f(???ovlﬂ/f(gméoak)

@ Integration in g-space performed using numerical quadrature.

1
Ii = / Igdg
0
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Spectral Clustering for CO-
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Spectral Clustering for Ny ('3/) — N (*S,)

20 Kinetics Bins (Spectra‘l) °
1020 Exact Solution e |

1018

Energy [eV]

Sahai et al. 3D Non-equilibrium Radiation March 27, 2019 30/31



Supplementary Slides

Spectral Clustering for Ny ('X/) — N (*S,)
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