Two-Photon Induced Polarization Spectroscopy with Atomic Oxygen

A. Meindl, S. Löhle, I. Kistner, A. Schulz and S. Fasoulas
Development
TIPS for atomic oxygen @ HEFDiG

• Last RHTG Workshop (Stuttgart): first xenon profiles; poor signal quality [1]

• October 2018: Detailed study of TIPS with xenon in Applied Optics journal [2]

• AIAA 2019 San Diego: first successful detection of atomic oxygen with TIPS, first absolute number density calibration attempt using xenon [3]
Two-Photon Induced Polarization Spectroscopy

TIPS
Goal: absorption of σ^+ (pump) and σ^- (probe) or vice versa.

Polarizations:
- σ^+
- σ^-
- π: superposition of equal parts of σ^+ and σ^-
Plasma Torch

- microwave powered; 1 kW & 2 kW, \(O_2 \), 5 ... 25 l/min
- TIPS scans: 20 Hz, 0.2 pm per wavelength step, averaged over 20 shots per step

\[d_i = 25.7 \text{ mm} \]

- quartz tube, slits
- TIPS position: ~3-4 mm above exit
- 9 mm overlap, centered
- Echelle for OES
Measurements

1 kW, 5 l/min

1 kW, 10 l/min

1 kW, 15 l/min
Spectra Analysis

- PARADE[3] fits to red spectral range

\[T_{el} \] from O emission lines around 777 nm and 844 nm

[3] Liebhart et al., 43rd AIAA Thermophysics Conference, New Orleans, 2012
Polarization Lineshape Modelling

\[P(\Delta \lambda) = X_{abs}(\Delta \lambda)^2 + (X_{disp}(\Delta \lambda) \pm \alpha)^2 \]
\[X_{abs}(\Delta \lambda) \] - absorption lineshape
\[X_{disp}(\Delta \lambda) \] - dispersion lineshape
\[\pm \alpha \] - asymmetry (analyzer offset)

coopropagating beams: absorption lineshape is Voigt profile.

\[X_{abs}(\Delta \lambda) = \frac{1}{\sqrt{\pi} \Gamma_D'} Re[W(x(\Delta \lambda) + iy)] \]
\[W \] - complex error function
\[\Gamma_D' \] - Gaussian HWHM

\[X_{disp}(\Delta \lambda) = \frac{1}{\sqrt{\pi} \Gamma_D'} Im[W(x(\Delta \lambda) + iy)] \]
\[\Gamma_L \] - Lorentzian HWHM

\[x(\Delta \lambda) = \frac{\Delta \lambda}{\Gamma_D'} \quad y = \frac{\Gamma_L}{\Gamma_D'} \quad \Gamma_D' = \frac{\Gamma_D}{\sqrt{\ln 2}} \]
\[\Delta \lambda \] - offset from line center
\[\Gamma_D \] - Gaussian HWHM
\[\Gamma_D' \] - Lorentzian HWHM

Polarization Lineshape Modelling

\[P(\Delta \lambda) = X_{abs}(\Delta \lambda)^2 + (X_{disp}(\Delta \lambda) \pm \alpha)^2 \]

profiles normalized to peak absorption; calculated for \(\Gamma_D = \Gamma_L = 0.5 \text{ pm} \)
Lineshape Fitting

fitting parameters: Γ_D, Γ_L, λ_0, $\pm \alpha$, scaling factor S

Γ_D calculated from T_{el} with assumption $T_{trans} = T_{el}$ and kept const. during fitting
Atomic Oxygen Ground State Population

\(J = 0 \) state of the atomic oxygen ground state triplet at 226.98 cm\(^{-1}\)
Relative O number densities

![Graph showing relative number density vs. flow rate (V) for 2 kW and 1 kW.]
Summary & Outlook

- successful O detection using TIPS for different plasma conditions in O_2-plasma at 1 atm
- plasma is not well understood (blue spectral range; flow conditions for differing parameters) – Suggestions?

to do:
- absolute number density calibration with xenon
Thank you for your attention!

Questions / Suggestions?