

Two-Photon Induced Polarization Spectroscopy with Atomic Oxygen

A. Meindl, S. Löhle, I. Kistner, A. Schulz and S. Fasoulas

Development TIPS for atomic oxygen @ HEFDiG

- Last RHTG Workshop (Stuttgart): first xenon profiles; poor signal quality ^[1]
- October 2018: Detailed study of TIPS with xenon in Applied Optics journal^[2]
- AIAA 2019 San Diego: first successful detection of atomic oxygen with TIPS, first absolute number density calibration attempt using xenon^[3]

Two-Photon Induced Polarization Spectroscopy TIPS

TIPS experimental setup

Goal: absorption of σ^+ (pump) and σ^- (probe) or vice versa

Plasma Torch

- microwave powered; 1 kW & 2 kW, 0₂ , 5 ... 25 l/min
- TIPS scans: 20 Hz, 0.2 pm per wavelength step, averaged over 20 shots per step

Measurements

1 kW, 10 l/min

1 kW, 15 l/min

University of Stuttgart

Spectra Analysis

• PARADE^[3] fits to red spectral range

 T_{el} from O emission lines around 777 nm and 844 nm

Polarization Lineshape Modelling

$$P(\Delta \lambda) = X_{abs} (\Delta \lambda)^2 + (X_{disp} (\Delta \lambda) \pm \alpha)^2 \quad ^{[4]}$$

- dispersion lineshape
- asymmetry (analyzer offset)

co-propagating beams: absorption lineshape is Voigt profile.

$$X_{abs}(\Delta \lambda) = \frac{1}{\sqrt{\pi}\Gamma_D'} Re[W(x(\Delta \lambda) + iy)]$$

$$X_{disp}(\Delta \lambda) = \frac{1}{\sqrt{\pi}\Gamma'_D} Im[W(x(\Delta \lambda) + iy)]$$

[5]

 $X_{abs}(\Delta \lambda)$ $X_{disp}(\Delta \lambda)$

 $\pm \alpha$

Δλ

 Γ_L

W

 Γ_D

- offset from line center
- complex error function
- Gaussian HWHM
- Lorentzian HWHM

 $x(\Delta \lambda) = \frac{\Delta \lambda}{\Gamma'_D}$ $y = \frac{\Gamma_L}{\Gamma'_D}$ $\Gamma'_D = \frac{\Gamma_D}{\sqrt{\ln 2}}$

[4] Steiger et al., *AIP Conference Proceedings*, Vol. 467, 1999.
[5] Ma et al., *J. Opt. Soc. Am. B*, Vol. 25, No. 7, 2008, pp. 1144–1155.

University of Stuttgart

Polarization Lineshape Modelling

 $P(\Delta \lambda) = X_{abs}(\Delta \lambda)^2 + (X_{disp}(\Delta \lambda) \pm \alpha)^2$

profiles normalized to peak absorption; calculated for $\Gamma_D = \Gamma_L = 0.5 \text{ pm}$

Lineshape Fitting

fitting parameters: Γ_D , Γ_L , λ_0 , $\pm \alpha$, scaling factor *S*

 Γ_D calculated from T_{el} with assumption $T_{trans} = T_{el}$ and kept const. during fitting

Atomic Oxygen Ground State Population

J = 0 state of the atomic oxygen ground state triplet at 226.98 cm⁻¹

Relative O number densities

Summary & Outlook

- successful 0 detection using TIPS for different plasma conditions in 0₂-plasma at 1 atm
- plasma is not well understood (blue spectral range; flow conditions for differing parameters) – Suggestions?

to do:

 absolute number density calibration with xenon

Thank you for your attention!

Questions / Suggestions?