

Exomars - ICOTOM REBUILDING OF ICOTOM RADIOMETER DATA DURING SCHIAPARELLI MARTIAN ENTRY

J. Annaloro⁽¹⁾, <u>P. Boubert⁽²⁾</u>, A. Bultel⁽²⁾, M.C. Druguet⁽³⁾, E. Duffour⁽⁴⁾, P. Hébert⁽¹⁾, M. Jacquot⁽²⁾, V. Lago⁽⁵⁾, M. Lesage⁽²⁾, S. Menecier⁽⁴⁾, P. Omaly⁽¹⁾, F. Perisse⁽⁴⁾, N. Rembaut⁽⁵⁾, P. Rivière⁽⁶⁾, A. Soufiani⁽⁶⁾, M. Spel⁽⁷⁾, D. Vacher⁽⁴⁾, S. T. Surzhikov⁽⁸⁾, D. Yatsukhno⁽⁸⁾ ⁽¹⁾ CNES ⁽²⁾ CORIA ⁽³⁾ IUSTI ⁽⁴⁾ Institut Pascal ⁽⁵⁾ ICARE ⁽⁶⁾ EM2C ⁽⁷⁾ R.Tech ⁽⁸⁾ IPM

ICOTOM : INFRARED RADIOMETER

Madrid – RHTG 2019 – CNES ICOTOM CONSORTIUM

E COLOS

- Global objectives (CNES)

- > TPS Design: IR radiative flux estimation during Schiaparelli entry
- Are TPS margins for the afterbody reasonable?

- Scientific objectives (Consortium)

- > What is the meaning of ICOTOM data in terms of of radiative flux density?
- > What was the chemical composition of the afterbody plasma?
- > What was the thermodynamic (equilibrium-nonequilibrium) status of the plasma?
- Which molecular transitions contribute to the IR afterbody radiation?

OUTLINE

- 1. Objectives
- 2. ICOTOM calibration Flight data analysis
- **3. Experimental studies**
- 4. Chemical kinetics in Martian plasmas
- 5. Non equilibrium radiative transfer calculations
- 6. Flowfield
- 7. Summary, Conclusions and Outlooks

OUTLINE

- 1. Objectives
- 2. ICOTOM calibration Flight data analysis
- **3. Experimental studies**
- 4. Chemical kinetics in Martian plasmas
- 5. Non equilibrium radiative transfer calculations
- 6. Flowfield
- 7. Summary, Conclusions and Outlooks

2. ICOTOM CALIBRATION – FLIGHT DATA ANALYSIS

ICOTOM locations on Schiaparelli

from Gülhan et al., JSR, 2018

ICOTOM sensitivity ranges

Calibration : Issues and Methodology

• Two available pre-flight calibration by Le Verre Fluoré (LVF: ICOTOM manufacturer) and DLR (integration on COMARS)

- COES

Calibration : Issues and Methodology

- Two available pre-flight calibration by Le Verre Fluoré (LVF: ICOTOM manufacturer) and DLR (integration on COMARS)
- Sensitivity of ICOTOM signals to the ICOTOM temperature: no test carried out by LVF or DLR on the flight models at -27°C

PS

CENTRE NATIONAL D'ÉTUDES SPATIALES

Calibration : Issues and Methodology

- Two available pre-flight calibration by Le Verre Fluoré (LVF: ICOTOM manufacturer) and DLR (integration on COMARS)
- Sensitivity of ICOTOM signals to the ICOTOM temperature: no test carried out by LVF or DLR on flight models at -27°C
- Post-flight calibration carried out on spare models: T≤600°C at DLR (enough for B2), T≥500°C at CORIA (necessary for B1)

Calibration: Issues and Methodology

- Two available pre-flight calibration by Le Verre Fluoré (LVF: ICOTOM manufacturer) and DLR (integration on COMARS)
- Sensitivity of ICOTOM signals to the ICOTOM temperature: no test carried out by LVF or DLR on flight models at -27°C
- Post-flight calibration carried out on spare models: T≤600°C at DLR (enough for B2), T≥500°C at CORIA (necessary for B1)
- Flight data calibration: which signal would have been given by spare models if they had flown?

Calibration: Issues and Methodology

- Two available pre-flight calibration by Le Verre Fluoré (LVF: ICOTOM manufacturer) and DLR (integration on COMARS)
- Sensitivity of ICOTOM signals to the ICOTOM temperature: no test carried out by LVF or DLR on flight models at -27°C
- Post-flight calibration carried out on spare models: T≤600°C at DLR (enough for B2), T≥500°C at CORIA (necessary for B1)
- Flight data calibration: which signal would have been given by spare models if they had flown?

Hemispheric irradiance - 115 s after the entry interface point (S2):

14FMB2 : 1.63 ± 0.03 kW.m ⁻²	
12FMB2 : 1.76 ± 0.10 kW.m ⁻²	
13FMB2 : 2.66 ± 0.11 kW.m ⁻²	

 COMARS 1
 09FMB1 : 5.32 ± 0.17 kW.m⁻²

 COMARS 2
 11FMB1 : 5.23 ± 0.35 kW.m⁻²

 COMARS 3
 08FMB1 : 8.17 ± 0.55 kW.m⁻²

DLR total radiometer (close to ICOTOM 8 and 13) : 9 ± 1,2 kW.m⁻² (Gülhan et al., JSR, 2018)

Sum of irradiance measured by ICOTOM 08FMB1 et 13FMB2 (minus the 2000 cm⁻¹ peak contribution) : 10,3 \pm 0,9 kW.m⁻²

Main uncertainties:

- ICOTOM (COMARS housing) temperature : ±3K
- Flight models Spare models relative behaviour

1.0 - 0.0 Utre 2000 cm p

Important remark

Results are given as hemispheric irradiance but the ICOTOM collection half-angle is 17,5°.

OUTLINE

- 1. Objectives
- 2. ICOTOM calibration Flight data analysis
- **3. Experimental studies**
- 4. Chemical kinetics in Martian plasmas
- 5. Non equilibrium radiative transfer calculations
- 6. Flowfield
- 7. Summary, Conclusions and Outlooks

3. EXPERIMENTAL STUDIES

Three facilities : different plasma conditions and rebuilding opportunities

- ICP (subsonic) intermediate enthalpy (low power, low flow rate) low pressure (T64)
- ICP (subsonic) intermediate enthalpy (intermediate power and flow rate) intermediate pressure (SOUPLIN)
- Arcjet (supersonic) high enthalpy low pressure with model (PHEDRA)

3. EXPERIMENTAL STUDIES (T64)

ICP low enthalpy – low pressure (0,1-2 Pa)

E COES

- Planned : IR spectroscopy
- Planned : Interferometry (electron density measurements)
- Done : ICOTOM measurements

ICP intermediate enthalpy (2-13 MJ/kg) – intermediate pressure (1-12 kPa)

• Done : ICOTOM measurements

3. EXPERIMENTAL STUDIES (SOUPLIN)

Done : CO Raman spectroscopy

osition	Pression	Enthalpie	Densité (m ⁻³)	Fraction molaire	Tr/Tv (K)		
		4 MJ/kg	9,8E+22	0,68	3100	ŝ	
					2600		
		5 MJ/kg	5,8E+22	0,39	3/00	5	
	6 kPa	6 kPa			3000		
		6 MJ/kg	5,2E+22	0,35	3900		
		0 MI/kg	4.05.22	0.25	2800		
Avai		2 MI7/ KB	4,06+22	0,25	5000		
⊦2 cm		4 MI/kg	1.6F+23	0.62	2500		
			1,02.20	0,02	2800		
		5 MJ/kg	1,0E+23	0,38	2400		
	9 kPa				2500		
		6 MJ/kg	7,4E+22	0,28	4200		
		0.041/1	E 25, 22	0.10	2300		
		9 IVIJ/Kg	5,3E+22	0,19	5500	Pos	
		4 MI/kg	1 OF+23	0.68	3000		
		- WD/ KB	1,01123	0,00	3000		
		5 MJ/kg 8.4F+22	0.56	3000			
	6 kPa	,	-,	-/	3300		
		6 MJ/kg	6,4E+22	0,39	2800		
					3000		
entre		9 MJ/kg 5,0E+22	0,33	5000	Ra		
) mm	9 kPa		4 MJ/kg 7,7E+22	7 75, 22	0.22	2800	+2
Jinin				0,55	3100		
		5 MI/kg	6.5F+22	0.28	2800		
		9 kPa	9 kPa	0,20	4200		
		6 MJ/kg 5,8E+22	0,25	2800			
					2300		
		9 MJ/kg	5,0E+22	0,17	6000		
		4 14/1/2	1 05.33	0.00	2000		
		4 IVIJ/ Kg	1,8E+22	0,08	3000		
	6 kPa	5 MI/kg	1 5F+22	0.07	2000		
		5 113/ 18	1,02.22	0,07	3300		
		6 MJ/kg	1,1E+22	0,05	2000		
				-	2000		
mont		9 MJ/kg	9,2E+21	0,04	6000		
1,5cm	9 kPa	4 MJ/kg					
		5 MJ/kg					
		6 MJ/kg					
		9 MJ/kg					

sition	Pression	Enthalpie	Densité (m ⁻³)	Fr. molaire	Tr/Tv (K)
adial 2 cm	6 kPa	4 MJ/kg			
		5 MJ/kg	4,8E+22	0,22	2000 3000
		6 MJ/kg	4,6E+22	0,21	2000 3300
		9 MJ/kg	3,7E+22	0,17	2000 3800
	9 kPa	4 MJ/kg	1,0E+23	0,31	2000 2900
		5 MJ/kg	8,4E+22	0,26	2000 3500
		6 MJ/kg	7,8E+22	0,24	2000 3500
		9 MJ/kg	7,2E+22	0,22	2000 4000

- Uncertainties on densities: 20%
 - Uncertainties on T_{vib} : 100 K (if ΔT_{rot} =0, T_{vib} probably smaller and reduced nonequilibrium)
- Uncertainties on T_{rot} still too large because of the remaining background

Madrid – RHTG 2019 – CNES ICOTOM CONSORTIUM

3. EXPERIMENTAL STUDIES (SOUPLIN)

ICP intermediate enthalpy (2-13 MJ/kg) – intermediate pressure (1-12 kPa)

Done : O two-photon absorption laser-induced fluorescence (TALIF)

- Dynamic excitation model for O fluorescence intensity
- Uncertainties on translation temperature: ±150K
- Density determination by calibration with xenon (post-processing in progress)
- Increasing translation temperature with small amounts of nitrogen and argon

Madrid – RHTG 2019 – CNES ICOTOM CONSORTIUM

3. EXPERIMENTAL STUDIES (PHEDRA)

Arcjet high enthalpy (20 MJ/kg) – low pressure (2 Pa)

- Done : ICOTOM measurements (very low signal: to be assessed)
- Done : IR spectroscopy (low signal: disturbed by the model own radiation)
- Done : VUV measurements

168

OUTLINE

- 1. Objectives
- 2. ICOTOM calibration Flight data analysis
- **3. Experimental studies**
- 4. Chemical kinetics in Martian plasmas
- 5. Non equilibrium radiative transfer calculations
- 6. Flowfield
- 7. Summary, Conclusions and Outlooks

CO₂ vibrational energy structure to be used in the kinetic model

CoRaM-Mars

- CO_2 , N_2 , Ar and derived species
- Electronic specific
- Vibrational specific
- Before this work:
 - decoupled vibrational modes
 - o no Fermi resonances
 - \circ no intermode exchanges
 - $\circ~$ not suitable with radiat. calcul.

Movement	Name	i	$\omega_i(cm^{-1})$	$\omega_i(eV)$	Quantum Nb
	Symmetrical stretching mode	1	1353,65	0,16782	v_1
	Bending mode	2	672,83	0,08342	v_2
	Bending-induced rotation				l ₂
	Asymmetrical stretching mode	3	2396,30	0,29710	<i>v</i> ₃

$$\begin{split} E(v_1, v_2, l_2, v_3, J = 0) &= E\left(v_1 \ v_2^{l_2} \ v_3, J = 0\right) \\ &= \sum_i \omega_i \left(v_i + \frac{g_i}{2}\right) + \sum_{i,j} x_{ij} \left(v_i + \frac{g_i}{2}\right) \left(v_j + \frac{g_j}{2}\right) + x_{ll} \ l_2^2 \\ &+ \sum_{i,j,k} y_{ijk} \left(v_i + \frac{g_i}{2}\right) \left(v_j + \frac{g_j}{2}\right) \left(v_k + \frac{g_k}{2}\right) + \sum_i y_{ill} \left(v_i + \frac{g_i}{2}\right) l_2^2 \\ &+ \sum_{i,j,m,n} z_{ijmn} \left(v_i + \frac{g_i}{2}\right) \left(v_j + \frac{g_j}{2}\right) \left(v_m + \frac{g_m}{2}\right) \left(v_n + \frac{g_n}{2}\right) \\ &+ \sum_{i,j} z_{ijll} \left(v_i + \frac{g_i}{2}\right) \left(v_j + \frac{g_j}{2}\right) l_2^2 + z_{llll} l_2^4 \end{split}$$

Tashkun S.A. *et al.,* JQSRT **60** 5, 785-801, 1998

- $E_d = D_0 = 5,4533 \ eV$
- $D_e = 5,7672 \; eV$

 $v_1 \in [0,35], v_2 \in [0,68], l_2 \in [0,v_2], v_3 \in [0,20]$

Harmonic oscillator 🧃

 $v_1 \in [0,31], v_2 \in [0,65], l_2 = 0, v_3 \in [0,18]$

CO₂ vibrational energy structure to be used in the kinetic model

Differences between Tashkun used for kinetic calculations and HITEMP used for radiation calculations

0.60

0.40

Methology and kinetics of grouping

VT $v_2 \pm 1 \rightarrow v_2$ $v_3 \pm 1 \rightarrow v_3$ VV'_{12} $v_1 \pm 1, v_2 \mp 2 \rightarrow v_1, v_2$ VV'_{23} $v_2 \pm 3, v_3 \mp 1 \rightarrow v_2, v_3$ VV'_{123} $v_1 \pm 1, v_2 \pm 1, v_3 \mp 1 \rightarrow v_1, v_2, v_3$ $v_m \pm 1, w_m \mp 1 \rightarrow v_m, w_m$ VV

Purpose

- Use the results of the s-t-s model
 - with radiative transfer calculations
 - with fluid dynamic calculations
 - suitable description (done)
 - reduced model (in progress)

E_v(eV) 1.00 n = 6, g = 27(4,0,0) (3,2,0) (2,4,0) (1,6,0) (0,8,0) (0,1,2) n = 4, g = 17(0,4,1) (1, 2, 1)(2,0,1)(0,7,0)0.90 n = 5, g = 17(0,0,2) (3,1,0) (2,3,0) (1,5,0) (0,3,1) n = 5, g = 18(1,4,0) (0,6,0) (1, 1, 1)(3,0,0) (2,2,0) 0.80 n = 2, g = 4(0,2,1) (1.0.1) n = 3, g = 12(2,1,0)(0,5,0) (1,3,0)0.70 n = 1, g = 2(0, 1, 1)n = 4, g = 10(1,2,0)(0,4,0) (2,0,0)(0,0,1)(0,3,0) n = 2, g = 6(1,1,0)0.50 (0,2,0) (1,0,0) n = 2, g = 4Fermi (0, 1, 0)n = 1, g = 2

Madrid – RHTG 2019 – CNES ICOTOM CONSORTIUM

OUTLINE

- 1. Objectives
- 2. ICOTOM calibration Flight data analysis
- **3. Experimental studies**
- 4. Chemical kinetics in Martian plasmas
- 5. Non equilibrium radiative transfer calculations
- 6. Flowfield
- 7. Summary, Conclusions and Outlooks

Incident radiative flux prediction

Ray tracing

Ray tracing
$$q_{\sigma}^{\mathrm{inc}}(M_1) = \int_{\varphi=0}^{2\pi} \int_{\theta=0}^{\frac{\pi}{2}} I_{\sigma}(M_1, \theta, \varphi) \sin \theta \mathrm{d}\theta \mathrm{d}\varphi$$

Radiative Transfer Equation $I_{\sigma}(M_1, \theta, \varphi) = \int_{s_{\infty}}^{s_{M_1}} \frac{\eta_{\sigma}}{\kappa_{\sigma}}(s') \frac{\partial}{\partial s'} \tau_{\sigma}(s_{M_1}, s') \mathrm{d}s' / \tau_{\sigma}(s_{M_1}, s') \mathrm{d}s'$

Radiative properties

$$\eta_{\sigma} = \sum_{ul} \frac{A_{ul}}{4\pi} h c \sigma_{ul} n_u f_{ul} (\sigma - \sigma_{ul}),$$

$$\kappa_{\sigma} = \sum_{ul} (n_l B_{lu} - n_u B_{ul}) h \sigma_{ul} f_{ul} (\sigma - \sigma_{ul}),$$

Level populations for CO and CO₂

$$n_u, n_l$$
 ?

Incoming

ray

n₁

θ

CO₂ vibrational level populations

Fermi polyad grouping

$$\{v_1l_2v_3r\}, r = 1,..,v_1+1$$

3-Temperature model

$$T_{v_{12}}, T_{v_3}, T_r$$

 $n_{\{v_1 l_2^{l_2} v_3\}}^{\text{polyad}}$

Splitting v_3/v_{12} mode

$$\begin{split} E^{v_3} \{ v_1 l_2^{l_2} v_3 r, p, J \} &= E^{vib} \{ 00^0 v_3 1, e, J' \} \\ E^{v_{12}} \{ v_1 l_2^{l_2} v_3 r, p, J \} &= E^{vib} \{ v_1 l_2^{l_2} v_3 r, p, J \} - E^{v_3} \{ v_1 l_2^{l_2} v_3 r, p, J \} \\ n_{u/l} &= n_{CO_2} A b_I \frac{2J_{u/l} + 1}{Q_I(T_r, T_{v_{12}}, T_{v_3})} \exp\left(-\frac{E^{rot} \{ u/l \}}{k_b T_r} - \frac{E^{v_{12}} \{ u/l \}}{k_b T_{v_{12}}} - \frac{E^{v_3} \{ u/l \}}{k_b T_{v_3}} \right) \end{split}$$

Madrid – RHTG 2019 – CNES ICOTOM CONSORTIUM

5. NON EQUILIBRIUM RADIATIVE TRANSFER CALCULATIONS

Example of application to a conical nozzle expanding jet in $70\%N_2$, $20\%CO_2$, $10\%H_2^{-1}O^{-1}$

cnes

OUTLINE

- 1. Objectives
- 2. ICOTOM calibration Flight data analysis
- **3. Experimental studies**
- 4. Chemical kinetics in Martian plasmas
- 5. Non equilibrium radiative transfer calculations
- 6. Flowfield
- 7. Summary, Conclusions and Outlooks

6. FLOWFIELD

Three different approaches and simulation codes

- Engineer-oriented, able to integrate advanced model (MISTRAL)
- Academic, able de deal with radiative transfer (ray tracing) and state-to-state model (PINENS)
- Global approach with surface interactions, turbulence and specific fluxes (NERAT)

6. FLOWFIELD (MISTRAL)

CENTRE NATIONAL D'ÉTUDES SPATIALES

Flow calculations before the blackout (S1)

- Strong CO₂ dissociation High temperature
- Low radiation

6. FLOWFIELD (MISTRAL)

Calculations in the ICOTOM collection cone

Temperature > -2 -3 n Х

S02--Annaloro13-allCollisionPartnersTvib

AS **CENTRE NATIONAL D'ÉTUDES SPATIALES**

6. FLOWFIELD (MISTRAL)

E CNES

Influence of the CO₂ dissociation rate (S2)

Madrid – RHTG 2019 – CNES ICOTOM CONSORTIUM

6. FLOWFIELD

Sensitivity of the flow field to the numerical calculation (MISTRAL and PINENS)

PINENS (S2)

- Time-implicit integration
- Academic Fortran
- State-to-state
- Chemistry : reduced CoRaM-Mars
- Radiative transfer (ray tracing)

MISTRAL (S2)

- Time-implicit or explicit integration
- Company C++
- Multi-temperatures
- Chemistry : Park
- No radiative transfer

CENTRE NATIONAL D'ÉTUDES SPATIALES

6. FLOWFIELD (PINENS)

CO₂ mole fraction contours without and with vibrational relaxation (S2)

• Reduced CO₂ dissociation when independent vibrational temperatures are considered (the driving temperatures are lower) in the front layer.

• Lower CO₂ recombination close to the wall in the afterbody environnement with vibrational relaxation (non-equilibrium)

Madrid – RHTG 2019 – CNES ICOTOM CONSORTIUM

6. FLOWFIELD (PINENS)

CO mole fraction contours without and with vibrational relaxation (S2)

CENTRE NATIONAL D'ÉTUDES SPATIALES

6. FLOWFIELD (NERAT)

Flowfield rebuilding with NERAT (involved in the Schiaparelli design) – point S2

- Catalytic/Non catalytic: no significant influence of the catalycity on the heat fluxes
- Satisfying estimation on the total radiative flux density compared to full radiometer flight data
- Strong underestimation of the convective flux density: disagreement with COMARS fluxmeters (about one order of magnitude)

Madrid – RHTG 2019 – CNES ICOTOM CONSORTIUM

CENTRE NATIONAL D'ÉTUDES SPATIALES

6. FLOWFIELD (NERAT)

6. FLOWFIELD (NERAT): TOWARDS RADIATION PREDICTION

Prediction during the blackout: trajectory rebuilding

No	II lau	V_{∞} ,	$ ho_{\scriptscriptstyle\infty},$	p_{∞} ,	P_{∞} ,	T_{∞} ,
JNS	п, кт	km/s	kg/m^3	Pa	erg/cm^{3}	K
1	82,467	5,82938	5,092E-06	0,16	1,6	165,5
2*	70,000	5,80000	2,500E-05	0,75	7,5	166,8
3*	60,000	5,78500	8,200E-05	2,1	21,	169.2
4*	50,000	5,50000	2,500E-04	8,2	82,	178,3
5*	45,000	5,20000	5,400E-04	17	170,	180
6*	40,000	4,70000	7,700E-04	25	250,	183
7*	35,000	4,10000	9,500E-04	33	330,	187
8*	32,500	3,30000	1,150E-03	49	490,	189
2	28,202	2,59541	1,542E-03	56,56	565,6	191,58

Madrid – RHTG 2019 – CNES ICOTOM CONSORTIUM

6. FLOWFIELD (NERAT): TOWARDS RADIATION PREDICTION

CENTRE NATIONAL D'ÉTUDES SPATIALES

Prediction during the blackout: trajectory rebuilding

No	H, km	V_{∞} ,	$ ho_{\scriptscriptstyle\infty},$	p_{∞} ,	p_{∞} ,	T_{∞} ,
142		km/s	kg/m^3	Pa	erg/cm^{3}	K
1	82 467	5 82938	5.092E-06	0.16	1.6	165.5
2*	70,000	5,80000	2,500E-05	0,75	7,5	166,8
5	00,000	5,78500	8,200E-03	2,1	21,	109.2
4*	50,000	5,50000	2,500E-04	8,2	82,	178,3
5*	45,000	5,20000	5,400E-04	17	170,	180
6*	40,000	4,70000	7,700E-04	25	250,	183
7*	35,000	4,10000	9,500E-04	33	330,	187
8*	32,500	3,30000	1,150E-03	49	490,	189
2	28,202	2,59541	1,542E-03	56,56	565,6	191,58

6. FLOWFIELD (NERAT): TOWARDS RADIATION PREDICTION

Prediction during the blackout : Spectral results (S2*)

OUTLINE

- 1. Objectives
- 2. ICOTOM calibration Flight data analysis
- **3. Experimental studies**
- 4. Chemical kinetics in Martian plasmas
- 5. Non equilibrium radiative transfer calculations
- 6. Flowfield
- 7. Summary, Conclusions and Outlooks

6. SUMMARY, CONCLUSIONS AND OUTLOOKS

- Calibrated ICOTOM flight measurements are available.
- Documentation of CO₂ plasma experimental database is in progress.
- Improvements of chemical kinetics and radiative model of CO₂ infrared radiation were done.
- Three different codes are rebuilding the aerothermochemical environment
 - Different levels of complexity towards the assessment of non-equilibrium radiation on the backshield
- First comparisons between preliminary calculations and flight data show differences
 - Moderate about the ICOTOM and total radiative flux measurements
 - Critical about the COMARS fluxmeter measurements
- 3D calculations taking into account the probe attitude
- Code validation (flow, chemistry, radiation) in the ICOTOM collection cone. Prediction on the whole hemisphere.
- Reduced CR implementation
- Narrow band model for CO₂ radiation
- Experiment rebuilding
- Open final meeting (beginning of 2020)

- CNES (André Dubus) for the financial support of the activity

- Ali Gülhan and the DLR team for the ICOTOM calibration and integration

– ESA, TAS-I, DEIMOS for the post-processing of flight data

Amelia for the attitude reconstruction

Exomars - ICOTOM REBUILDING OF ICOTOM RADIOMETER DATA DURING SCHIAPARELLI MARTIAN ENTRY

J. Annaloro⁽¹⁾, <u>P. Boubert⁽²⁾</u>, A. Bultel⁽²⁾, M.C. Druguet⁽³⁾, E. Duffour⁽⁴⁾, P. Hébert⁽¹⁾, M. Jacquot⁽²⁾, V. Lago⁽⁵⁾, M. Lesage⁽²⁾, S. Menecier⁽⁴⁾, P. Omaly⁽¹⁾, F. Perisse⁽⁴⁾, N. Rembaut⁽⁵⁾, P. Rivière⁽⁶⁾, A. Soufiani⁽⁶⁾, M. Spel⁽⁷⁾, D. Vacher⁽⁴⁾, S. T. Surzhikov⁽⁸⁾, D. Yatsukhno⁽⁸⁾ ⁽¹⁾ CNES ⁽²⁾ CORIA ⁽³⁾ IUSTI ⁽⁴⁾ Institut Pascal ⁽⁵⁾ ICARE ⁽⁶⁾ EM2C ⁽⁷⁾ R.Tech ⁽⁸⁾ IPM