CAN-TS protocol

Protocol for memory constrained embedded
application

CAN in Space 2019, Gothenburg/Sweden

Dejan Gacénik (CTO)

skylgtg

Motivation

A need for a lightweight CAN application layer
protocol

 Implementation to fit also 16-/8-bit MCU architectures
« Highly efficient (raw vs. payload data rate)

 Services to fits satellites requirements

CAN-TS Maturity

First protocol specification released in 2012 v1.0
for ESMO mission

* 2019 v1.4 released and becomes a open source

* Flight heritage CAN-TS v1.2 on board of a TRISAT
satellite (launch Q3/2019)

Hot redundant CAN bus configuration (v1.2 specific)

» picoRTU distributed remote terminal unit
CAN-TS support v1.4
ECSS CANbus extension protocol ECSS-E-ST-50-15C supported

picoRTU system EM

CAN-TS

« CAN-TS is communication protocol and device O3l layers
services specification for embedded systems Application
used in space applications. -

S || Presentation
S

. CAIN-(;I'S imhplementsi;crlme Iayc(ars abc:cve and § Session
including the network layer (OSI reference i Transport
model). = ni

Network

» The CAN-TS protocol defines an addressing 1SO 11898-1 Data link
scheme and several memory efficient
communication services are support 150 11896-2

Fully compliant with CAN Data link layer 1SO 11898-1

CAN-TS Frame

CAN-TS exploits CAN2.0B extended frame
+ To/ From address, Transfer type and Command ID encapsulated in 29-bit CAN identifier

. Origir}c‘v?lidation: message acceptance additionally validated by source address (implementation
specific

« Considered use of CAN ID dominances
* Upto 255nodes
« User defined broadcast messages (Time SYNC address = 0)

Software based acknowledgment
« Assurance of SW message processing
» Higher reliability trade-off against bus utilization

Efficient data field usage
« Complete 8 bytes of data field available for protocol services.

. SRR, - RTR, Dam Length .
SOF ‘ 1D A {11 bits) H \DE H 1D B (18 bits) | o0, rl {4 bits] H Data Field [0...8 bytes) | CRC | ACK | EOF l
Extended frame CAN 2.08
To Address | Type SRR, From Address Command RTR, Dat Length .
k I/D | SOF ‘ R ﬂ-his]” — H prten = || e | e || Data Field [0...8 bytes) || CRC || ACK || EOF |
skylabs et e

CAN-TS Transfer type

Services

CAN-TS supports 6 application layer services (transfer types)

» Telecommand and Telemetry as single-message transfers

1. Telecommand
« Acknowledged transfer (request/acknowledge)
« Single TC Response has up to 8 bytes of payload data
* Upto 256 TCs per device

Ll L
b, (o] [oor] e Tamo | = | =T o | o][| e B v | ace | [|

ey CAN-TS/TC frame

To Address SRR. From Address TC Channel Unused
0000 CRC EOF
, L2] Lo s [B R (oo o] L] L]

CAN TSfTG.PL‘K frame

L3
:."’“d‘“
b To Address SRR, From Address TC Channel Unused
L] [eSS [l Y el e (obyees) (e] (o] (=]
CAN-TS fTC-

CAN-TS Transfer type

Services (cont'd)

2. Telemetry
Acknowledged transfer (request/acknowledge)
Single TM Request has up to 8 bytes of payload data

Up to 256 TMs per device
{10 bits)

o] L]]

o, To Address SRR, From Address TM Channel Unused
9 E el I el Yl e (oo
CAN-TS/TM frame
To Address SRH..- From Address T Channel Data Length Data
e (8 bits) (2 bits) (8 bits) (4 bits) (1.3 bytas)
& CAN TSﬁM-mK frame

‘

b
SOF To Address 011 SR.R.. From Address 10 ™ Ch.annd RTR, 0000 Unused
(8 bits) (8bits) (8 bits) r0, rl (Obytas)

(=6

CAN-TS,TM-NACK frame

3. Unsolicited Telemetry
TM message send directly, without request

Periodic transfer (keep-alive for redundancy mgmt., HSK TM,...) or event driven (warning limit,...)

Single Un. TM message up to 8 bytes of payload data
« Point to point (e.g. Cycling through HSK TM) or Broadcast transfer

Command
[10 bits)

To Address SRR,

IDE

Data Length
(4 bits)

] [=]

From Address ThA Ch an el
(8 bits) (8bits]

‘ Data

(0...5 bytes)

|

CAN TS\I’IJ-TMf Tame

CAN-TS Transfer type

Services (cont'd)

4. Time Synchronisation
Distribution of time (time format is mission specific)
Unsolicited telemetry message broadcasted by time master
Broadcast and highest priority message (To address = 0)

Command
{10 bits)
SRR, |[From Address Unused RTR, Data
SOF || cacooaon | 000 IDE (& bits) (10 bits) ro, r1 1000 (& bytes)

CAN-TS (TS frame

» Set and Get Block as multi-message transfers
+ Suited for large data exchanges between nodes (addressable space up to 64-bit)
» Acknowledged transfer type with re-transmission capability
* Abort mechanism and predetermined timeout interval
+ Upto 512 bytes per transfer cycle
* Address ranges from 8-bit up to 64-bit address width

skylgb\s

CAN-TS Transfer type

Services (cont'd)

5. SetBlock

» Used to transfer larger blocks of data from source to sink

» Datareconstruction possible even if frames are received out of order
» Sink side tracks time from last received valid frame, if time exceeds

predefined time, sink shall close session (Abort message).

‘Command
(10 bits)

(o] e] (=]

(o] e =]

(e

[£3 =1

(e

(o] (2] =]

e To Address SRR, From Address Um.sad #ofblks Data Length| Start Address
(8 bits) IDE ebits) || (1wt} | [6bits) ru, rl (4 bits) (1.8 bytes)
CAN-TS /5B Request
To Addrass SRR, From Addres s Copy of command RTR, Data Length Copy of data
(8 bits) IDE (3 bits) (7 bits) 0, rl (4 bits} (0...3 bytes)
CAN-TS /5B ACK
To Address SRR, From Address Unused Unused
E| (8 bits) ol | S I i et (0 bytes)
CAN-TS/SB NACK
SOF To Address SRR, From Address Unused | Sequence Data Length Data
(8 bits) IDE (B bits) 11 (1bi) | [6bis) rD rl (4 bits) (1.8 bytes)
CAN-TS/5B Transfer
To Address SRR, From Address Unused 0000 Unused
(8 bits) IDE (Bbits) {7 bits) rD rl (0 bytes)
CAN-TS/SB Abart
To Address SRR, From Address Unused 7 0000 Unused
(8 bits) IDE (8 bits) (7 bits) r0, rl (0 bytes)
CAN-TS,/5B Status Request
To Addrass SRR, From Addres s Unusad RTR, Data Length Bitmap of received blocks
(8 bits) IDE (3 bits) {1 bit)| (6 bits) r0, rl (4 bits) (1.3 bytes)

|

CAN-TS /5B Report

skylgb\s

CAN-TS Transfer type

Services (cont'd)

6. GetBlock

» Used to transfer larger blocks of data from sink to source
» Datareconstruction possible even if frames are received out of order

» Sink side tracks time from last received valid frame, if time exceeds
predefined time, sick shall close session (Abort message).

Command
(10 bits)

SOF To Address 101 SRR, From Address Unused | # of blks Data Length Start Address CRC EOF
(8 bits) IDE (8 bits) (1bit) | (6bits) (4bits) (L...8 bytes)
CANTSIGBREqut
To Address SRR, From Address Copy of command RTR, Data Length Copy of data
SOF 101 o010 . CRC EOF
Looe P e] b=][25 | P ot
CAN-TS/GB ACK
To Address SRR, From Address Unus ed Unused
101 0000 CRC EOF
wea | 2 || e |[TReae] e [R5][> || ot Lene] e] o<
CAN-TS /GB NACK
SOF To Address SRR, From Address Unused Data Length Bitmap of blocks to send CRC EOF
(8 bits) IDE (8 bits) (7 bits) (4bits) (1...8 bytes)

CAN- TSﬁGBsmn:

SOF To Address SRR, From Address
(8 bits) IDE (8 bits)

U Lsed|SequEmr

{1 bit) | {6 bits)

RTR, ||Datalength
r0, rl (4 bits)

Data
o e

CAN-TS fGB Transfer

SOF To Address SRR, From Addrass
(8 bits) IDE (8 bits)

[o]

Unused
(7 bits)

Lo]| == |

Unused
CRC EOF
e [E[E3ES

CAN-TS/GB Abort

]
-]

g‘:}
/&
ol

%

cé‘?
Y

3"-%

3\ \3
3
& Ve \Va

2
g“m-
(S

/

CAN-TS Bus redundancy

» Bus redundancy management is based on Keep Alive
messages (To address =1).

* Unsolicited telemetry messages sent to address 1.
+ Telemetry channels used by keep alive messages are node

Redundancy master YES
keep alive message
received?

specific. They are usually selected in a way that any other
module knows module health just by listening to keep alive

Reset number of
bus switches

messages.

« Redundancy management is based on 3 mission specific
parameters (inherited approach as ECS-E-ST-50-15C):

* Keep alive interval — Amount of time between two consecutive
keep alive messages sent by node.

* Bus switch timeout — Amount of time to wait on one bus before
switching to another one, if expected keep alive message is not
receiveld. It should be several times longer than keep alive ves
interval.

* Number of bus switches — Maximum number of bus switches. It
must be odd number. That way, node will settle on secondary, if
no master keep alive message is received.

Bus switch
timeout?

Maximum
number of bus
switches
reached?

Switch bus

CAN-TS: Keep Alive monitor logic

Implementation example

TRISAT Satellite

« 6 CAN nodes on-board: OBC, CPDU, TM/TC COMM, Payload Hi-Speed
COMM, ADCS, MMSI Payload OBC

» 13 physical addresses

1x CPDU: local

2x COMM: GS + local)

4x OBC: local + low level + scheduler + job table
2x AIM: local + low level

2x PAYLOAD local + low level

2x SBAND GS + local

low [evgl access ensured over PicoSkyFT SoC CAN controller (specific function) - no FW
required.

e and 4 broadcasts

CAN Address: 0 — Time Synchronisation (OBC time master%

CAN Address: 1 — Subsystem Keep-alive (heartbeat with HSK TM)
CAN Address: 2 — Subsystem Error unsolicited

CAN Address: 3 — Warning unsolicited

Implementation example

TRISAT Satellite (cont'd)

« Hot redundant CAN bus configuration (CAN-TS v1.2 specific)
 3U satellite defined over 300 TM/TC channels

« On-board CAN bitrate: 125 kbps (up to 2000 CAN msgs per
second)

» Rotating buffer of up to 20 keep-alive messages per subsystem
» 1 keep alive message per 2 seconds per subsystem

- Time synchronization: 1 time sync message per second (ms
resolution)

« Effective mass transfers data rates of more than 56kbps (max
data bandwidth 62 kbps with CAN2.0B)

* FW upgrades, logs, raw and payload data access

CAN-TS vs CANopen

Memory consumption (picoRTU - PicoSkyFT-L processor):

« CAN-TS (redundancy, retransmission supported)
* Program memory size: 5 kB
+ Perinstance block transfer data memory consumption:
set block: 538
+ getblock: 533

« CANopen (CANfestival, modified to conform to ECSS-E-ST-50-15C)
* Program memory size: 24 kB
» Object dictionary : 10 kB (data memory)
« SDO context: ~1 KB (depends on max. block transfer size, in our case 889 B)

Pros for each protocol:

« CAN-TS:
» Appropriate for constrained devices
+ Stateless, except SB and GB

« CANopen:
+ Standardized, a lot of tools/implementations available
* Interoperability
« Larger block transfers possible (better bus utilization)

OVEMENT

CONTENT STANDARD =

CAN-TS is open source OPENzz:a=

% CODE
Reference implementation gv-«z;SUURFEm

PUBLIC =

|
=
=
- |
=
=
=
£

=
=

INTER

MODIFIC

. 58%)g§hed and officially announced today @ CANinSpace

» Server side CAN-TS implementation for memory
constrained devices available 9%
https://github.com/skylabs-si/CANTS-MCU

« GitHub example PicoSkyFT Evaluation Board (SKY-9213)
« CAN to USB interface (CAN2USB V2)

* Released under BSD license:
» Allows commercial use, distribution and modifications
* No liability

« Stay tuned, Client side CAN-TS implementation will be soon
avallable in cross platform C++ implementation.

PicoSkyFT Evaluation Board
(SKY-9213)

https://github.com/skylabs-si/CANTS-MCU

Thank you

SkyLabs d.o.o.
Koroska cesta 53D
SI1-2000 Maribor

info@skylabs.si

mailto:info@skylans.si

CAN-TS vs CANopen

support slides
|

Complexit
Transport protocols

CAN TS

Simple

Time sync (TS)

Unsolicited telemetry (UTM)
Telemetry (TM)
Telecommand (TC)

Set block (SB)

get block (GB)

Management protocols

Liveness monitoring Application layer (UTM on
destination 1)

CAN bus redundancy
switching

Standardization None, open source available

Data location Anywhere (accessed through
callbacks)

Part of specification, application
layer, similar to ECCS-E-ST-50-15C

Unsolicited telemetry Application layer has to send it
handling

CANopen
Complex
Time Stamp Object (TIME)
Process Data Object (PDO)
Service Data Object (SDO)

Synchronization Object (SYNC)
Network Management (NMT)
Emergency Object (EMCY)
Part of CANopen (guarding,
heartbeats)

Not in CiA 301, but in ECCS-E-
ST-50-15C

CiA 301, ECSS-E-ST-50-15C for
space applications
Object dictionary

Stack can be configured to
send PDOs automatically

Similar concepts:

TIME and TS,

PDO and UTM,

SDO block transfer with SB and GB,
SDO expedited transfer with TM and
TC

TCvs. NMT
Un. TM vs EMCY/SYNC

