
CAN-TS protocol
Protocol for memory constrained embedded 

application

CAN in Space 2019, Gothenburg/Sweden

Dejan Gačnik (CTO)



Motivation
• A need for a lightweight CAN application layer 

protocol

• Implementation to fit also 16-/8-bit MCU architectures

• Highly efficient (raw vs. payload data rate)

• Services to fits satellites requirements



CAN-TS Maturity
• First protocol specification released in 2012 v1.0 

for ESMO mission

• 2019 v1.4 released and becomes a open source

• Flight heritage CAN-TS v1.2 on board of a TRISAT 
satellite (launch Q3/2019)

• Hot redundant CAN bus configuration (v1.2 specific)

• picoRTU distributed remote terminal unit
• CAN-TS support v1.4

• ECSS CANbus extension protocol ECSS-E-ST-50-15C supported

picoRTU system EM

TRISAT satellite PFM 



CAN-TS
• CAN-TS is communication protocol and device 

services specification for embedded systems 
used in space applications. 

• CAN-TS implements the layers above and 
including the network layer (OSI reference 
model). 

• The CAN-TS protocol defines an addressing 
scheme and several memory efficient 
communication services are support  

• Fully compliant with CAN Data link layer  ISO 11898-1

CA
N-

TS
 p

ro
to

co
l

ISO 11898-1

ISO 11898-2



CAN-TS Frame
• CAN-TS exploits CAN2.0B extended frame 

• To / From address, Transfer type  and Command ID encapsulated in 29-bit CAN identifier

• Origin validation: message acceptance additionally validated by source address (implementation 
specific)

• Considered use of CAN ID dominances
• Up to 255 nodes

• User defined broadcast messages (Time SYNC address = 0)

• Software based acknowledgment
• Assurance of SW message processing 

• Higher reliability trade-off against bus utilization

• Efficient data field usage
• Complete 8 bytes of data field available for protocol services.



CAN-TS Transfer type
Services

CAN-TS supports 6 application layer services (transfer types)

• Telecommand and Telemetry as single-message transfers
1. Telecommand

• Acknowledged transfer (request/acknowledge)

• Single TC Response has up to 8 bytes of payload data

• Up to 256 TCs per device



2. Telemetry

• Acknowledged transfer (request/acknowledge)

• Single TM Request has up to 8 bytes of payload data

• Up to 256 TMs per device

3. Unsolicited  Telemetry 

• TM message send directly, without request

• Periodic transfer (keep-alive for redundancy mgmt., HSK TM,...) or event driven (warning limit,...)

• Single Un. TM message up to 8 bytes of payload data

• Point to point (e.g. Cycling through HSK TM) or Broadcast transfer

CAN-TS Transfer type
Services (cont’d)



4. Time Synchronisation

• Distribution of time (time format is mission specific)

• Unsolicited telemetry message broadcasted by time master

• Broadcast and highest priority message (To address  = 0)

• Set and Get Block as multi-message transfers
• Suited for large data exchanges between nodes (addressable space up to 64-bit)

• Acknowledged transfer type with re-transmission capability

• Abort mechanism and predetermined timeout interval

• Up to 512 bytes per transfer cycle

• Address ranges from 8-bit up to 64-bit address width

CAN-TS Transfer type
Services (cont’d)



CAN-TS Transfer type
Services (cont’d)

5. Set Block 

• Used to transfer larger blocks of data from source to sink

• Data reconstruction possible even if frames are received out of order

• Sink side tracks time from last received valid frame, if time exceeds 
predefined time, sink shall close session (Abort message).



CAN-TS Transfer type
Services (cont’d)

6. Get Block 

• Used to transfer larger blocks of data from sink to source

• Data reconstruction possible even if frames are received out of order

• Sink side tracks time from last received valid frame, if time exceeds 
predefined time, sick shall close session (Abort message).



CAN-TS Bus redundancy
• Bus redundancy management is based on Keep Alive 

messages (To address =1). 
• Unsolicited telemetry messages sent to address 1. 

• Telemetry channels used by keep alive messages are node 
specific. They are usually selected in a way that any other 
module knows module health just by listening to keep alive 
messages.

• Redundancy management is based on 3 mission specific 
parameters (inherited approach as ECS-E-ST-50-15C):

• Keep alive interval – Amount of time between two consecutive 
keep alive messages sent by node.

• Bus switch timeout – Amount of time to wait on one bus before 
switching to another one, if expected keep alive message is not 
received. It should be several times longer than keep alive 
interval.

• Number of bus switches – Maximum number of bus switches. It 
must be odd number. That way, node will settle on secondary, if 
no master keep alive message is received.

CAN-TS: Keep Alive monitor logic



Implementation example
TRISAT Satellite

• 6 CAN nodes on-board: OBC, CPDU, TM/TC COMM, Payload Hi-Speed 
COMM, ADCS, MMSI Payload OBC

• 13 physical addresses 
1x CPDU: local
2x COMM: GS + local
4x OBC: local + low level + scheduler + job table
2x AIM: local + low level
2x PAYLOAD local + low level
2x SBAND GS + local

low level access ensured over PicoSkyFT SoC CAN controller (specific function) - no FW 
required.

• and 4 broadcasts
CAN Address: 0 – Time Synchronisation (OBC time master)
CAN Address: 1 – Subsystem Keep-alive (heartbeat with HSK TM)
CAN Address: 2 – Subsystem Error unsolicited
CAN Address: 3 – Warning unsolicited



Implementation example
TRISAT Satellite (cont’d)

• Hot redundant CAN bus configuration (CAN-TS v1.2 specific)

• 3U satellite defined over 300 TM/TC channels

• On-board CAN bitrate: 125 kbps (up to 2000 CAN msgs per 
second)

• Rotating buffer of up to 20 keep-alive messages per subsystem
• 1 keep alive message per 2 seconds per subsystem

• Time synchronization: 1 time sync message per second (ms
resolution)

• Effective mass transfers data rates of more than 56kbps (max
data bandwidth 62 kbps with CAN2.0B)

• FW upgrades, logs, raw and  payload data access



CAN-TS vs CANopen
Memory consumption (picoRTU - PicoSkyFT-L processor):

• CAN-TS (redundancy, retransmission supported)
• Program memory size: 5 kB

• Per instance block transfer data memory consumption:
• set block: 538

• get block: 533

• CANopen (CANfestival, modified to conform to ECSS-E-ST-50-15C)
• Program memory size: 24 kB 

• Object dictionary : 10 kB (data memory)

• SDO context: ~1 KB (depends on max. block transfer size, in our case 889 B)

Pros for each protocol:

• CAN-TS:
• Appropriate for constrained devices

• Stateless, except SB and GB

• CANopen:
• Standardized, a lot of tools/implementations available

• Interoperability

• Larger block transfers possible (better bus utilization)



CAN-TS is open source
Reference implementation

• Published and officially announced today @ CANinSpace
2019!

• Server side CAN-TS implementation for memory 
constrained devices available @ 
https://github.com/skylabs-si/CANTS-MCU

• GitHub example PicoSkyFT Evaluation Board (SKY-9213)

• CAN to USB interface (CAN2USB V2)

• Released under BSD license:
• Allows commercial use, distribution and modifications

• No liability

• Stay tuned, Client side CAN-TS implementation will be soon 
available in cross platform C++ implementation.

PicoSkyFT Evaluation Board 
(SKY-9213)

GitHub URL

https://github.com/skylabs-si/CANTS-MCU


Thank you
SkyLabs d.o.o.

Koroška cesta 53D

SI-2000 Maribor

info@skylabs.si

mailto:info@skylans.si


CAN-TS vs CANopen
support slides

CAN TS CANopen Notes
Complexity Simple Complex
Transport protocols Time sync (TS)

Unsolicited telemetry (UTM)

Telemetry (TM)

Telecommand (TC)

Set block (SB)

get block (GB)

Time Stamp Object (TIME)

Process Data Object (PDO)

Service Data Object (SDO)

Similar concepts:

TIME and TS,

PDO and UTM,

SDO block transfer with SB and GB,

SDO expedited transfer with TM and 

TC

Management protocols Synchronization Object (SYNC)

Network Management (NMT)

Emergency Object (EMCY)

TC vs. NMT

Un. TM vs EMCY/SYNC

Liveness monitoring Application layer (UTM on 

destination 1)

Part of CANopen (guarding, 

heartbeats)

CAN bus redundancy 

switching

Part of specification, application 

layer, similar to ECCS-E-ST-50-15C

Not in CiA 301, but in ECCS-E-

ST-50-15C

Standardization None, open source available CiA 301, ECSS-E-ST-50-15C for 

space applications
Data location Anywhere (accessed through 

callbacks)

Object dictionary

Unsolicited telemetry 

handling

Application layer has to send it Stack can be configured to 

send PDOs automatically


