
N 7 S PA C E
CANopen library demonstration on SAMV71 MCU

Michał Mosdorf

Marcin Dzieżyc

2019

CAN in Space

2

N7 SPACE

• Joined venture between SPACEBEL and N7 Mobile located
Poland
• Software company founded in 2017

• Started operation with projects previously executed by N7 Mobile that were
transferred to N7 Space (e.g. PROBA3 SW)

• Software engineering team located in Warsaw office with space experience
since 2014

• Focus on software development for upstream segment

• On-board software

• Leon3, Cortex-M7, Zynq

• MBSE

• ASN.1/ACN, SDL, MSC, Capella, TASTE

2019

3

Selected activities

• PROBA3 ASPIICS on-board software

• CBK’s subcontractor in PROBA3 mission responsible for on-board software

• Responsibility for complete ECSS based software development lifecycle
for GR712 boot SW, application SW based on RTEMS and Python based SVF

• ARM CoreSight usage in space applications

• Prime contractor in PLIIS funded R&D activity focused on ARM CoreSight usage for
multi-core software tracing and inter core interreference analysis on ARM Cortex-A53

• MBSE activities

• ASN.1/ACN used for code generation in PUS TC/TM stacks used embedded projects

• ASN.1 IDE based on Qt Creator with PUS-C library allowing tailoring for future missions

• Plugins between Capella system level and TASTE environment to allow SDL modelling
and code generation for Cortex-M4F (joined activity with Creotech Instruments)

2019

©ESA–P. Carril

4

ARM BSP with CANopen library

• Project executed under ESA Polish Incentive Scheme with Microchip

• Software development activities for SAMV71 Cortex-M7 MCU

• Bootloader compliant with the ESA SAVOIR requirements

• Utilization of PUS-C stack supported by ASN.1/ACN formal modelling

• Board Support Package

• Driver library for MCU

• CANopen library implementing tailored ECSS-E-ST-50-15C

• Demonstration applications based on RTEMS 5

• Lifecycle and target TRL

• Project lifecycle and quality requirements based on tailored ECSS-E-ST-40C and
ECSS-Q-ST-80C

• Target criticality C and TRL6

2019

5

Bootloader Software

• Bootloader software for Cortex-M7 SAMV71

• Software requirements specification based on SAVOIR Flight Computer Initialisation Sequence Generic
Specification provided by ESA

• Major characteristics

• Model based PUS-C TC/TM stack developed using ASN.1/ACN modelling supported by ESA tool ASN1SCC

• Execution from internal Flash memory

• Self-test of the internal SRAM and external SDRAM memories

• Failure reporting through boot and death reports

• Bare metal design (no RTOS used)

• Utilizes a minimal set of BSP drivers developed in the project scope

• Supported PUS (1, 5, 6, 8, 17)

• Additional custom PUS 6 subservice for flash memory operations

2019

6

BSP and CANopen library

• Bare metal driver library with support for following peripherals

• Serial interfaces:

• Ethernet, I2C, SPI, CAN, UART, ISI, QSPI

• Other modules:

• SDRAMC, WDT, RSWDT, LPOW, NVIC, SYSTICK, XDMAC, TIC, PWM, RTC, RTT, PIO, AFEC, FPU, EEFC, PMC, RSTC, SUPC

• Integration of the selected drivers with the RTEMS 5

• CANopen library

• ECSS-E-ST-50-15C, clauses: 9 (Minimal implementation), 7 (Time distribution), 8 (Redundancy management)

• Master and slave modes

• PDO data transfer: unconfirmed command, telemetry request, SYNC

2019

• RTEMS clock Driver Shell (SysTick) • RTEMS RTC device (Timer)

• RTEMS TCP/IP Driver (Ethernet) • RTEMS I/O Manager (MCAN)

7

The ECSS-E-ST-50-15C standard

• CANbus extension protocol

• Proposes a structure and implementation of specific network layers in a CAN-
based network

• Includes CANopen as a protocol on top
of the physical layer

• Describes key elements of the protocol,
including time distribution, redundancy
management and minimal implementation
of the object dictionary

• Based on the CAN in Automation 301 document

2019

8

Tailoring of the CANopen library

• Implementation followed the following clauses of the ECSS-E-ST-50-15C standard:

• Clause 7 – Time distribution

• Clause 8 – Redundancy management

• Clause 9 – Minimal implementation of CANopen protocol for highly asymmetrical control
applications

• Main elements left out from the implementation:
• SDOs (Service Data Objects)

• Support for remote transmission request (RTR)

• Support for setting remote SCET time

• Implementation of an EDS-to-OD (Electronic Data Sheet to Object Dictionary) converter

2019

9

Architecture and implementation

• Architecture and implementation

• A number of components implementing specific services described in the standard

• Sets of components then matched together to produce role-specific libraries

2019

10

Object Dictionary

• Structure of the object dictionary
• A dictionary of objects indexed by 16-bit integers

• Each entry can be a record, further storing values under 8-bit subindices

• Many different data types for objects: from boolean, through 8-bit to 64-bit integers, to
Unicode strings

• Certain address ranges are standardized
• 0x1000 - 0x1FFF – Communication object area

• 0x2000 - 0x5FFF – Manufacturer specific area

• 0x6000 - 0x9FFF – Device profile specific area

• 0xA000 - 0xBFFF – Interface profile specific area

• The structure of the dictionary can't be changed
at runtime

2019

11

Object Dictionary

• Dictionary is defined in the form of
a header file included in the
application

• Contains the definitions of the
underlying objects and the dictionary
structure

• User application can register
custom object write handlers for
each index

2019

12

Network Management & Redundancy

• Heartbeat messages sent periodically to verify status of node/bus

• Messages contain current status of node
• Heartbeat handlers in the application can be used to guide the initialization process

• Library accommodates two driver adapters, for nominal and redundant bus
connections
• Both can refer to a single interface in case of no redundancy

• Bus switching behaviour configuration based on special values under index
0x2000:
• Bdefault – default bus selector

• Ttoggle – time before switching bus

• Ntoggle – number of switches before giving up

2019

13

Customizability

• Certain service managers (NMT, SYNC, Time) and the Object Dictionary allow
registering custom reception event handlers

• Synchronization service can be used to invoke periodical behaviour in nodes and schedule
periodical updates of contents of specific objects

• This enables development of fully event-driven applications

• In combination with small library size and independence from operating systems,
our implementation can be fit into small MCU-driven devices, e.g. measurement
probes

2019

14

Portability

• Implementation designed to remain independent from processor architecture,
operating system and communication interfaces

• API allowing usage of any character-based communication medium

2019

15

Portability

• Custom driver adapters can be used to further integrate the library with an
underlying operating system (e.g. RTEMS)

• The library offers a data entry
procedure, which can be directly
incorporated in interrupt
handlers

2019

16

Testing & qualification approach

• Test environment

• Controlled by CI Jenkins server

• Unit tests implemented in open-source Cmocka

• Achieved >80% code and branch coverage

• Code coverage analysed with ported gcov

• Static analysis

• MISRA compliance with Cppcheck

• Code metrics with Lizard

• Integration and validation supported by Python scripting
environment responsible for C&C communication

• PEAK dongle and CANfestival used for CANopen validation

• BSP integrated into Microchip web server demo

2019

17

Performance measurement scenarios

• We performed test measurements of performance of the library in three
scenarios:

• Active waiting – transmit a single message or a 16-message burst and wait until the hardware
queue is empty before queuing more messages;

• Event-based transmission – transmit the messages upon reception of a system event
generated in the transmission interrupt handler;

• Active queue filling – variation of active waiting; poll the hardware queue status and transmit
the messages whenever there’s space in the queue.

• Measurements were performed with an RTEMS-based demo application, with the
processor clock running at 150MHz and bus baudrate of 1MBit/s

2019

18

Performance measurement results

• Performed by triggering 10000 queueing operations (giving 10000 messages for
single message transmissions and 160000 messages for bursts).

• With baudrate of 1Mbit/s, average user data rate is ~530kbit/s.

2019

Active waiting Event-based transmission
Active queue

filling
Single message

16-message
burst

Single message
16-message

burst

Data bandwidth
usage

69.4% 93.6% 62.9% 92.9% 95.79%

CPU load from
CANopen library

29.8% 34.7% 30.5% 33.2% 34.3%

19

Conclusion and future

• Reusable software suite for Cortex-M7 processor line from Microchip

• Boot software

• Board Support Package

• Portable CANopen library

• Future steps

• CAN FD support

• Eagle Eye integration

• BSW & BSP adaptation to the RH71

• Support for SpaceWire and IO Switch Matrix

• Remote application booting through SPI and RMAP

• FreeRTOS integration

• Criticality B qualification

2019

20

Thank you for your attention

2019

Michał Mosdorf
mmosdorf@n7space.com

Marcin Dzieżyc
mdziezyc@n7space.com

+48 22 299 20 50
www.n7space.com

mailto:mmosdorf@n7mobile.com
mailto:mdziezyc@n7space.com
http://www.n7space.com/

