

GR716 Microcontroller for Embedded Space Application <u>Fredrik Johansson</u>¹ Jan Andersson¹ Martin Rönnback¹ Fredrik Sturesson¹ Francisco Hernandez¹ Luca Antunes Tambara

Gothenburg, Sweden – June 11-24, 2019

Description

The GR716 features a fault-tolerant LEON3 SPARC V8 processor, communication interfaces and on-chip ADC, DAC, Power-on-Reset, Oscillator, Brown-out detection, LVDS transceivers, regulators to support for single 3.3V supply, ideally suited for space and other high-rel applications

Applications

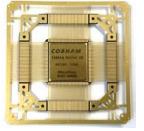
Support for many different standard interfaces makes the GR716 microcontroller is ideally fit for handling supervision and control in a satellite, such as

- propulsion system control
- sensor bus control
- robotics applications control
- simple motor control
- mechanism control
- power control
- particle detector instrumentation
- radiation environment monitoring
- thermal control
- antenna pointing control
- remote terminal unit control
- simple instrument control

Specifications

• System frequency up-to 50 MHz

- SpaceWire links up-to 100 Mbps
- CQFP132 hermetically sealed ceramic package
- Total Ionizing Dose (TID) up to 100 krad (Si, functional)
- Single-Event Latch-Up (SEL) to $LET_{TH} > 118 \text{ MeV-cm}^2\text{mg}$
- Single-Event Upset (SEU) below 10⁻⁶ bit error rate and day in space environment
 - Support for single 3.3V supply

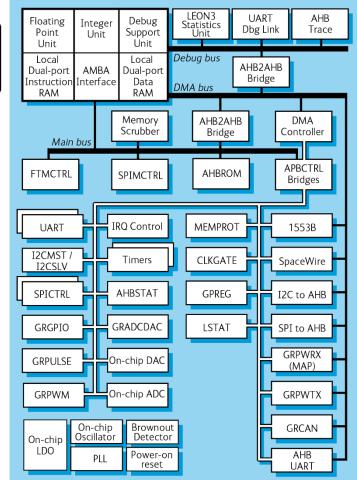


COBHAM

GR716 – LEON3FT Microcontroller

Microcontroller Features

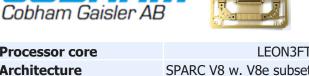
- LEON3FT Fault-tolerant SPARC V8 32-bit processor, 50 MHz
 - LEON-REX 16-bit instructions for improved code density
 - Floating Point Unit
 - 192KiB on-chip instruction and data memory
 - Memory protection units
 - Non-intrusive advanced on-chip debug support unit
- External EDAC memory: 8-bit PROM/SRAM, SPI, I2C
- SpaceWire interface with time distribution support, 100 Mbps
- MIL-STD-1553B interface
- 2x CAN 2.0B controller interface
- PacketWire with CRC acceleration support
- Programmable PWM interface
- SPI with SPI-for-Space protocols
- UARTs, I2C, GPIO, Timers with Watchdog
- Dual ADC 11bits @ 200Ksps, 4 differential or 8 single ended
- DAC 12bits @ 3Msps, 4 channels
- Mixed General purpose inputs and outputs
- Power-on-Reset and Brown-out-detection
- Temperature sensor, Integrated PLL
- On-chip regulator for 3.3V single supply
- 132 pin QFP, 24 mm x 24 mm



SPARC

Compliant

SCD V8


CAN in Space 2019 | GR716 - Radiation-tolerant Microcontroller for Space Applications

* Dhrystone Performance: Compiler Versions and Ground Rules application note is available at https://www.gaisler.com/index.php/information/app-tech-notes

GR716 – LEON3FT Microcontroller

Processor Performance

- On-chip SRAM w/ Dual Port, EADC and Scrubbing, Radiation Tolerant
 - 192 KiB Instruction and Data User defined mix of instruction vs data
- Integrated Floating Point Unit
 - IEEE-754 compliant floating-point unit, supporting both single and double precision operands
- Memory Protection Unit
 - 8 zones and individual access control of peripherals
- System Clock frequency: 50MHz
 - Dynamic reconfiguration of system clock for low power
- System Benchmark
 - Dryshtone: 0.93 Dhrystone / MHz
 - Whetstone: 0.43 Whetstone / MHz
 - CoreMark: 2.21 CoreMark / MHz
 - EDAC, Scrubbing, DMA transfers and debug are non-intrusive and do not affect performance

Processor	Processor core	LEON3FT
	Architecture	SPARC V8 w. V8e subset
	RISC type	32bit
	Instruction set	SPARC V8(e), LEON REX
	Pipeline stages	7
	Tightly coupled memory	192 KiB
	FPU	IEEE-754
	MPU	yes
	Mul/Div	Mul/Div
	Peripheral DMA	multi-channel
	Interrupt handling	deterministic
	Performance counters	yes
	Debug unit	yes
	Embeded trace buffer	yes
	Processor MHz	50
Performance	Dhrystone / MHz	0.93
	Whetstone / MHz	0.43
	CoreMark / MHz	2.21

COBHAM

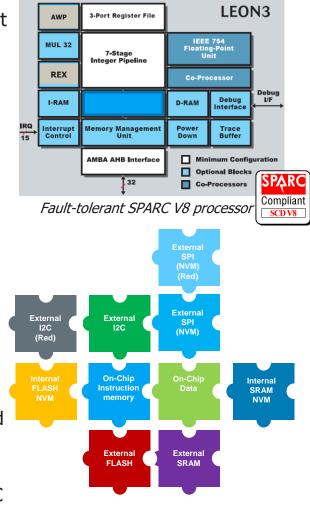
Typical Power Consumption @ Nominal temp and voltage conditions

- Standby
 - Current consumption direct after boot has finished (Waiting remote boot)
- CoreMark
 - Highest measured current consumption while running CoreMark (All code is executed from internal memory protected by EDAC)
- Whetstone
 - Highest measured current consumption while running Whetstone (All code is executed from internal memory protected by EDAC)
- CAN / SRAM / RTEMS
 - Highest measured current consumption while receiving and transmitting on the CAN bus.
 - RTEMS operating systems and drivers are executed from external SRAM

Mode	Supply Mode	Frequency	1.8V Supply	3.3V Supply
Standby	Dual Supply	10MHz	18mA	10mA
	Single Supply	10MHz	-	34mA
	Dual Supply	25MHz	58mA	11mA
	Single Supply	25MHz	-	75mA
CoreMark	Dual Supply	10MHz	36mA	10mA
	Single Supply	10MHz	-	52mA
	Dual Supply	25MHz	104mA	11mA
	Single Supply	25MHz	-	121mA
WhetStone	Dual Supply	10MHz	34mA	10mA
	Single Supply	10MHz	-	48mA
	Dual Supply	25MHz	97mA	11mA
	Single Supply	25MHz	-	117mA
RTEMS/CAN	Dual Supply	10MHz	35mA	15mA
	Single Supply	10MHz	-	56mA
	Dual Supply	25MHz	78mA	20mA
	Single Supply	25MHz	-	104mA

* Values represents maximum measured current consumption in mode or test

** Values are an average of 128 sample averaging with 532us between samples


Key features – processor and memory

Processor core

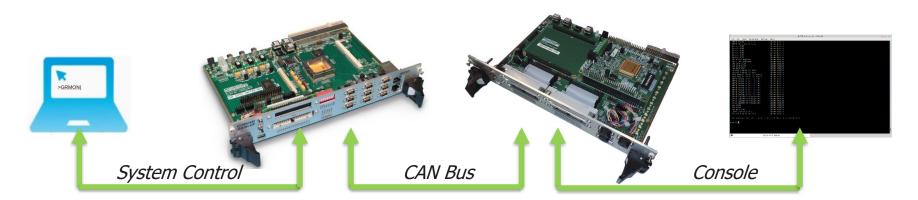
- Fault-tolerant SPARC V8 processor with 31 register windows and support 16-bit instruction operation (REX)
- Double precision IEEE-754 floating point unit
- Memory protection units with 8 zones and individual access control of peripherals
- Advanced on-chip debug support unit with trace buffers and statistics
- Deterministic software execution and non-intrusive debugging
- Fast context switching (PWRPSR, AWP, register partitioning, SVT, MVT)
- Interrupt zero jitter delay

Memory support

- 192KiB EDAC protected tightly coupled memory with single cycle access from processor and ATOMIC bit operations
- Dedicated SPI Memory interface with boot ROM capability and EDAC
- I2C memory interface with boot ROM capability
- 8-bit SRAM/ROM I/F with support up to 16MiB ROM and 256MiB SRAM
- Scrubber with programmable scrub rate for all embedded memories and external PROM/SRAM and SPI memories
- Redundant boot memory (PROM/SRAM/SPI/I2C/NVRAM)
- Application software container for checking software integrity using CRC
- Boot from internal SRAM, external PROM/FLASH/SRAM/SPI/I2C memory

Support of many variety of memory types

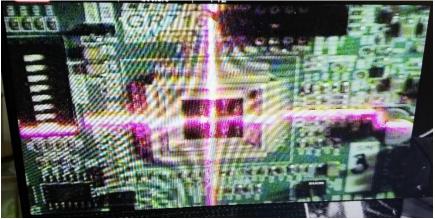
Boot options

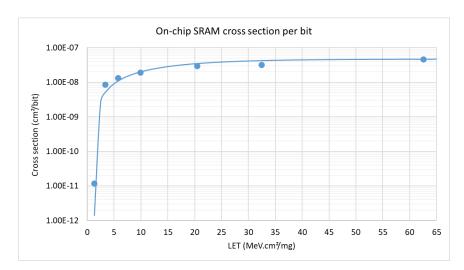

- Remote boot (no software or external memory required)
 - UART
 - SpaceWire RMAP
 - SPI / SPI4SPACE
 - I2C
- Internal Boot PROM supported boot (configures the I/0s):
 - External PROM/SRAM
 - External SPI Memory
 - Embedded NVRAM/PROM/SRAM in package (future option)
 - External I2C PROM
- Direct boot (bypass internal boot prom)
 - External PROM/SRAM
 - External SPI Memory
 - Embedded NVRAM/PROM/SRAM in package (future option)

Select Boot option via external pins

Boot via CAN

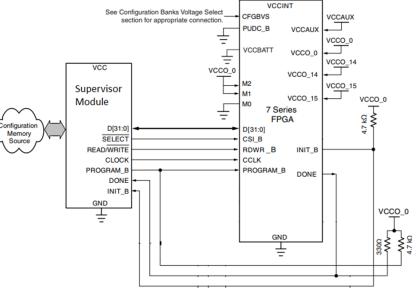
- Boot over CAN is supported via small boot software
 - Remote read and write commands access to all register memory locations
 - Support processor restart at arbitrary location
- Demonstration software based upon drivers and software included in the free GR716 software environment available for download at www.gaisler.com
- Demonstration software is demonstrated using software simulator TSIM-GR716 and in real-world allowing a GR740 Quad-Core LEON4 Processor to access to full memory space in GR716 for uploading software.




For a demonstration please visit Cobham Gaisler's exhibition stand

Radiation hardening - Ready for Space

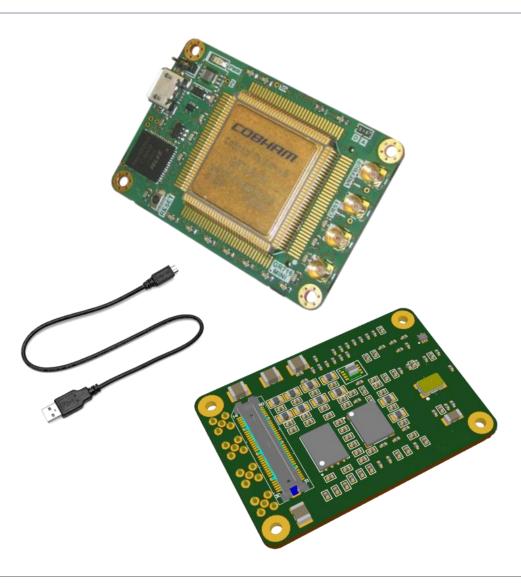
- Processor register file
 - 32+7 BCH EDAC + bit-interleaving + bit-spacing
- On-chip instruction and data memories
 - 32+7 BCH EDAC + bit-interleaving
 - Independent programmable periodic scrubber for instruction and data memories
- External memory interfaces
 - 8-bit external PROM/SRAM interface with 32+7 BCH EDAC protection
 - Programmable periodic scrubber for PROM/SRAM and SPI memories
 - Redundant memory boot capability
- System and Configuration register
 - General RHBD (IMEC DARE180U)
 - PLL and IOs configuration registers
 RHBD + 32+7 BCH EDAC
- Analog hardware blocks
 - General RHBD (IMEC DARE180U)



* The results presented are from the first silicon and they do not represent the final silicon ** Results in agreement with the data known from the IMEC DARE180U library and 100% of all upsets were corrected during heavy Ion test

Flight Model

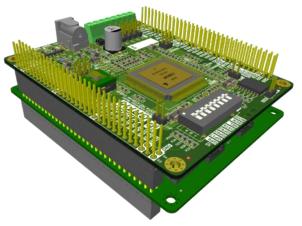
- GR716 is currently available in engineering samples
- Re-spin of the die is planned for tapeout the end of 2019
- Support for CAN-FD (GRCANFD)
- Programmable timing for analog multiplexing and conversion
- Additional ADC Sample&Hold circuits to support motor control
- LVDS with fail-safe and cold-spare
- SpaceWire routing capabilities
- FPGA supervisor core (GRSCRUB)
 - Compatible with Xilinx FPGAs
 - SelectMap interface
 - Programming
 - Scrubbing
 - Blind or readback
 - Full or partial
 - CRC, ECC, or Full Frame Check (FFC)


FPGA supervisor example Adapted from Xilinx UG470

Flight devices planned to be available end of 2020

Evaluation Boards

- Design for evaluation board:
 - GR716 microcontroller
 - SPI Flash PROM (32 MiB)
 - SRAM (2 MiB)
 - FTDI USB interface
 - GRMON3 debug I/F via Debug UART
 - 2x UART interfaces, 1x I2C interface
 - control of reset, configuration pins etc.
 - power supply
 - 4x MMCX (micro-miniature coaxial):
 - 2x ADC, 2x DAC
 - miniature 80 pin mezzanine connector:
 - addition ADC, DAC, LVDS, GPIO, etc.
 - Oscillator
 - LED for power indication etc.
 - 50mm x 35mm (37.5% of a credit card)
- Shipped with:
 - free GRMON3 GUI (limited) download
 - free compilers, OS, tools downloads
 - USB cable (debug and power)



Development Board

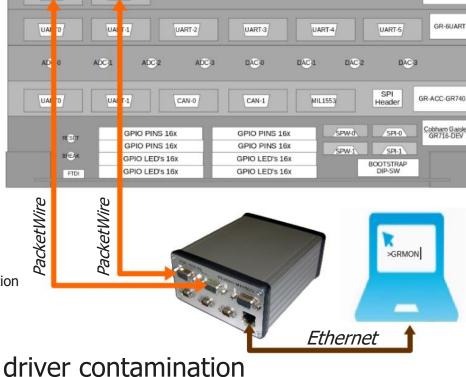
- Design for development board:
 - GR716 microcontroller
 - SPI Flash PROM (32 MiB)
 - PCI104 style stackable headers (2 x 64 pin) for interfaces
 - measurement points on all GPIO/interface signals for monitoring/debug
 - interface to user defined modules (memory, digital I/F, analog I/F)
 - interface to cPCI mother board in 6U rack or box format
 - Debug UART /IF
 - LVDS in/out (3+3 pairs) for 1x SpW or x SPI for Space
 - GPIO (64 pins)
 - digital I/O
 - external memory I/F
 - 6x UART
 - Mil-Std-1553B, PacketWire, CAN, I2C, 3x SPI, 16x PWM out
 - 8x analog in, 4x analog out, external ADC/ADC interface
 - 1x SpaceWire, 1x TDP
 - Socketed oscillator (5–25MHz)
 - DIP-switch for bootstrap options
 - Powered from external supply (range 5V to 12V)
 - Single supply operation or individual supplies
 - 80mm x 100mm format

GR716 Standalone Board

Stack multiple boards via PC104 connector

GR-CPCI-GR716-DEV – GR716 interface development board

- Design for interface application board:
 - GR716-BOARD engineering board in dedicated slot
 - Multiple slots for possibility to attach multiple GR716 engineering boards
 - Expansion slot for memory or user defined functions (e.g. SRAM, ADC/DAC)
 - Socketed oscillators for system, SpaceWire, Mil-Std-1553B and PWM clocks
 - Configuration of front panel functions
 - Front panel interfaces
 - MDM9S for fixed SpW (LVDS) interface
 - MDM9S for configurable SpW/SPI4S (LVDS) interface
 - GPIO (64 pins on standard 0.1" connectors)
 - LED indicators (64) for GPIO pins
 - DIP switch for bootstrap options
 - Reset and DSU Break push-button switches
 - LEDs for power and reset status
 - FTDI USB interface
 - GRMON3 debug I/F via Debug UART
 - 2x UART interfaces, 1x I2C interface
 - Power from external supply (range +5V to +12V) or via cPCI backplane connector (+5V)
 - Expansion through accessory boards
 - 6x UARTs using GR-CPCI-6U-UART
 - CAN, Mil-Std-1553B, SPI using GR-CPCI-GR740
 - 233mm x 160mm, 6U cPCI format, 2 slot wide front panel

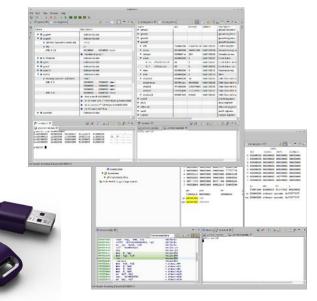


GR-TMTC-PW

GR716 – LEON3FT Microcontroller

Build your application

- Build your application via available interface boards
- Compatible boards possible to direct connect and use from Cobham Gaisler:
 - GR-ACC-6U-6UART
 - Extend number of UARTs in the system
 - GR-ACC-GR740
 - Dual CAN 2.0 transceiver, Dual MIL-1553B interface and SPI interface
 - GR-CPCI-CAN
 - Dual CAN 2.0 transceiver
 - GR-TMTC-PW (6U)
 - RX/TX PacketWire interface
 - SPI4S Test Board
 - Reference board for SPI for Space demonstration
 - Analog Front end
 - Easy connection of external ADC and DAC
- Use Configuration Board to avoid driver contamination
 - Possible to fit mezzanine board on the development board to avoid erroneous configuration of the IOs



Software development environment

- BCC2 Development Environment
 - GCC 7.2.0 or CLANG 8
 - Performance increase with '*link time optimization*'
 - CLANG 8 to be released in 2019
 - GR716 BSP Support build in
 - GR716 features and IO Device drivers
- GRMON3 Debugger
 - Graphical User Interface (GUI) based on Eclipse TCF (Target Communication Framework) platform
 - GRMON displays HW/SW state in GUI without GDB in-between
- TSIM3 Software Simulator
 - GR716 features and IO device Support

TSIM

COBHAM

GR716 – LEON3FT Microcontroller

BCC2 for GR716

- Bare metal toolchain for LEON processors
 - C/C++ cross compilers, both GCC and LLVM/Clang
 - C/C++ standard libraries
 - Open source with permissive licenses
- Support for GR716
 - Basic support for the GR716 architecture
 - Memory map, interrupts, capabilities
 - Linker scripts
 - ROM resident images
 - Support for GR716 features
 - REX
 - Single Vector Traps
 - Can generate chip specific instructions
 - Device drivers for GR716 I/O cores
 - SpaceWire, CAN, SPI, 1553, GPIO etc.
 - Flat mode, staying in one register window
 - Can reduce jitter
 - Can be used with register window partitioning
 - Optional C runtime with even smaller footprint: -qnano

BCC2 for GR716 - Adjusting to different profiles

Property	Performance	Footprint	IRQ Response time
Soft mul/div	-	-	+
Soft float	-	-	+
Flat mode	*	-	+
Single Vector Trapping	-	+	-
Smaller runtime: -qnano		+	~
More register windows	+	~	~
IRQ jitter reduction	-	~	-
REX		+	
Optimize for size	-	+	\sim

Effects in general for the given metric:

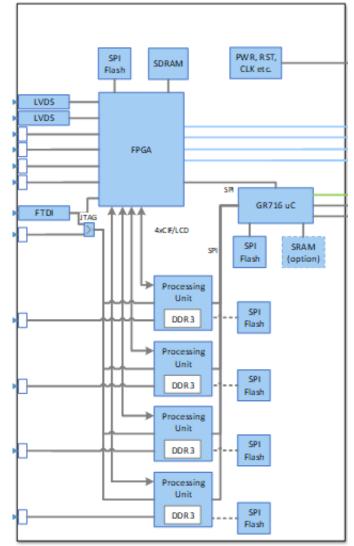
- + better * Varies
- worse
- ~ marginal

TSIM3 GR716 Simulator development

- Already used in daily internal testing
 - All boot possibilities
 - Load and run from local memory or external RAM (SPI-PROM, FLASH, SRAM)
 - External interfaces
 - SpaceWire, CAN, SPI, GPIO, etc.
 - Many of the new GR716 features in place

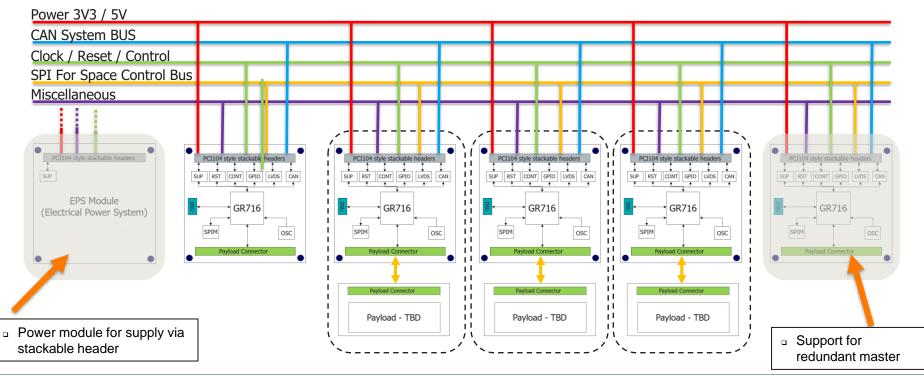
• TSIM GR716 release in 2019 June

- In between TSIM2 and TSIM3
 - GR716 does not need all new features of TSIM3
- User model API available
 - Not in final TSIM3 form



\$ /tsim-leon3 -gr716 ./coremark.elf tsim> run TSIM/LEON3 SPARC simulator, version tsim3-dev-ad71c1e55f1cee67 (internal version) Copyright (C) 2018, Cobham Gaisler - all rights reserved. For latest updates, go to http://www.gaisler.com/ Comments or bug-reports to support@gaisler.com Number of CPUs: 1 register windows: 31 system frequency: 50.000 MHz using 64-bit time Allocated 128 KiB LOCAL ICACHE RAM memory at 0x31000000 Allocated 64 KiB LOCAL DCACHE RAM memory at 0x30000000 allocated 4096 KiB SRAM memory, in 1 bank allocated 2048 KiB ROM memory allocated 16384 KiB SPIM ROM memory allocated 16384 KiB SPIM ROM memory section: .text, addr: 0x31000000, size 78032 bytes section: .rodata, addr: 0x30000000, size 3088 bytes section: .data, addr: 0x30000c10, size 1584 bytes read 475 symbols tsim> run starting at 0x31000000 2K performance run parameters for coremark. CoreMark Size : 666 Total ticks : 18529354 Total time (secs): 18.529354 Iterations/Sec : 107.936844 Iterations : 2000 Compiler version : GCC7.2.0 Compiler flags : -O2 -qnano -qsvt -qbsp=gr716 -mcpu=leon3 Memory location : Static seedcrc : 0xe9f5 [0]crclist : 0xe714 [0]crcmatrix : 0x1fd7 [0]crcstate : 0x8e3a [0]crcfinal : 0x4983 Correct operation validated. See readme.txt for run and reporting rules. CoreMark 1.0: 107.936844 / GCC7.2.0 -O3 -gnano -gsvt -flto -gbsp=gr716 -mcpu=leon3 / S Program exited normally. tsim>

User Scenarios – COTS Supervisor


- European Space Agency activity "High Performance Compute Board - An FPGA Accelerated DSP Payload Data Processor Board"
- GR716 will supervise four cutting-edge AI processing COTS devices coupled with a high-capacity FPGA in order to provide a board that supports state-of-the-art computer vision implementations
- Board architecture to be presented at the Space Computing Conference in July 2019

User Scenarios – Small Satellite payload boards

- Concept configuration for Small Satellites:
 - Redundant master support and support for up-to 4 payloads in hardware
 - CAN is selected as main system and payload bus
 - SPI-For-Space is used for software download and control.
 - Supports redundancy via one or multiple master

Conclusion

• TBD

GR716 Microcontroller for Embedded Space Application Fredrik Johansson¹ Jan Andersson¹ Martin Rönnback¹ Fredrik Sturesson¹ Francisco Hernandez¹ Lucas Antunes Tambara¹ ¹ Cobham Gaisler AB, Gothenburg, Sweden

Acknowledgement: ESA and Claudio Monteleone (technical officer at ESA for this development contract)

THANK YOU!

Contact: fredrik.johansson@gaisler.com support@gaisler.com

