

Proven reliability for a new space age

Implementation of CAN-bus in high reliability LEON3FT platform for low cost NewSpace systems

Stefan Strålsjö Business line manager Smallsat Uppsala Sweden

CAN in space workshop 11-14 June 2019

AAC Microtec[®] S 戸 A © 直

End User

~~

0

Customer

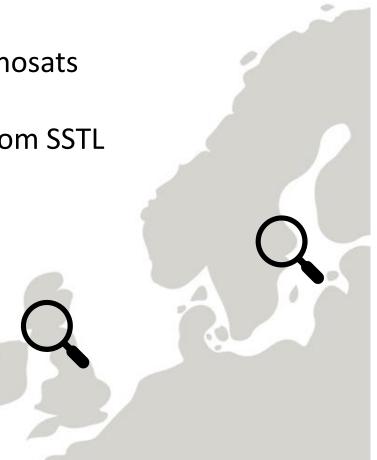
WHO ARE WE?

Small Satellites from **1kg to 50kg** Focus on **quality** and **reliability** Ready for **volume production** and testing Unrivalled **flight heritage**

END-TO-END MISSION solutions for customers including launch service and operations

Attractive offering for constellations and operators

Strong position for high growth


Award winning, globally recognized for innovation and leading position in the small satellite market.

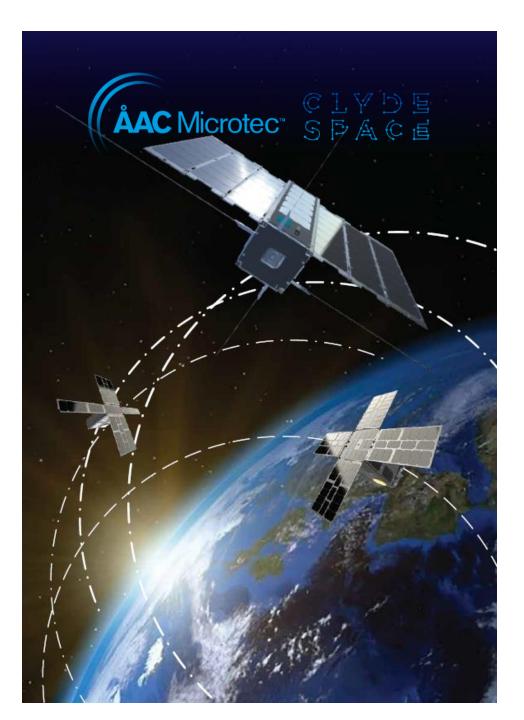
History

- Founded in 2005
- Facilities in Uppsala, Glasgow, Harwell, US
- Listed on the Nasdaq First North 2016
- Merged in 2018 to be provider of complete nanosats and subsystems for the smallsat market
- CEO, Luis Gomes joined in May 2019 coming from SSTL

SMALL SATELLITE CONSTELLATIONS

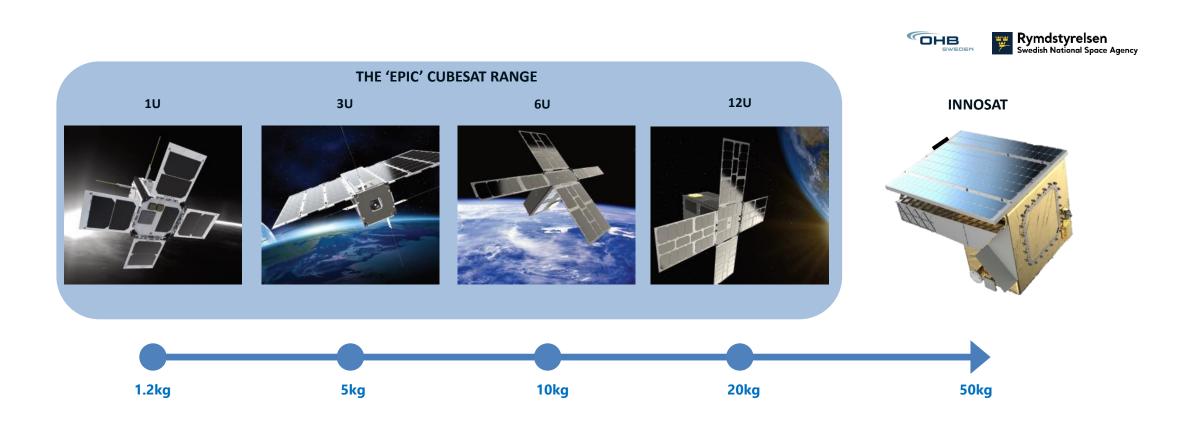
Constellations

- A network of satellites
- Enables more frequent data collection


Constellations expected to account for 70% of future demand

Our strategy is to target constellation customers with

- Data delivery (Space-as-a-Service)
- Complete platforms
- Subsystems to platform integrators


We are gaining momentum

• Multiple current orders for pilots from parties targeting to create constellations

Satellite products

AAC Microtec で上マウェ S戸Aで直

Space as a service

Mission design and analysis

Subsystem manufacture and test

Spacecraft integration and test

Launch and deployment

On-orbit operations

CLYDE SFACE


FULL RANGE OF SUBSYSTEMS FOR SMALL SATELLITES

AAC Microtec SFACE

Competences

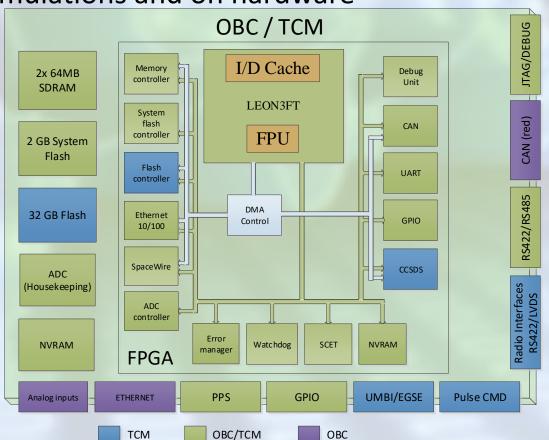
- RnD on two sites
 - Power electronics
 - Flight software
 - FPGA development
 - Mechanical structures
 - Mission design and analysis
 - Satellite operations

Sirius Avionics

- First generation 2 products, OBC and TCM
 - System on chip with OpenRISC 1200
 - 5 years in LEO
 - Distributed system @50MHz
 - TID and SEE environmental tested
 - BootROM in TMR:ed FPGA
 - 2xSpacewire
 - 16GB mass memory
 - Small formfactor ~100gram
 - Modular design

Sirius Avionics

- Second generation products with LEON3FT was developed with Cobham Gaisler Sweden
 - System on chip with LEON3FT
 - All previous requirements fullfilled
 - Increased performance and reliability
 - Image upload via PUS commands
 - 32GB massmemory



Sirius System on a chip architecture

- SoC architectures implemented in FPGAs
- Mitigation techniques for radiation effects
- Peripherals are verified both in simulations and on hardware
- Realtime OS RTEMS 4.11
- CCSDS with CPDU
- DMA on critical paths
- GRMON3 for debug purposes

Sirius Avionics

- Extensions via add-on board
 - Ethernet
 - CAN bus (Redundant)
 - Spacewire router

Sirius Avionics

Add-on board CAN specifics

- GRCAN IP (Cobham Gaisler)
- CAN physical layer 3.3V
- Compatible with ISO11898-2
- Baud rate up to 1 Mbit/s

AAC Microtec[®] の下点で直

Sirius Avionics

- Radiation testing and mitigations strategies
 - TID testing up to 30krad
 - CO60 source
 - Low dose rate (0.1 to 0.2 krad(si)/h)
 - Components active during testing
 - ESCC 22900-2 compliant
 - SEE testing using Proton source

Radiation hardness by design Involves programming and digital logic to correct malfunctions in the hardware.

AAC Microtec S 户 A C 直

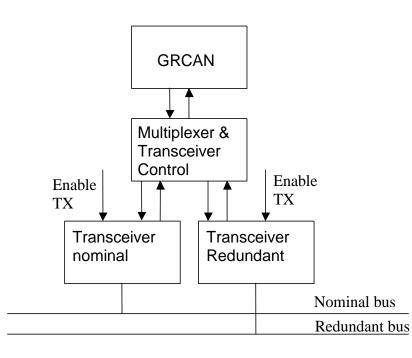
- EDAC on all memories
- TMR:ed software images
- Fallback solution for SW config
- Watchdog
- Error managing (HK)

CUBE satellites

- Many cubesats using I2C and SPI
- Need of reducing harness and more reliable bus
- Using CAN is a step to take cubesats to a more mature level
- Protocols needs to be decided

CANopen on Sirius products

- Power systems (future) and avionics
- Sub-system provider
- Standardized solution to facilitate integration
- ECSS-E-ST-50-15C The CAN bus physical layer specification for spacecraft applications
- A generic higher layer protocol (CANopen) for use over CAN bus in spacecraft applications
- Testing: data throughput, redundancy and fault state handling


CANopen on Sirius products

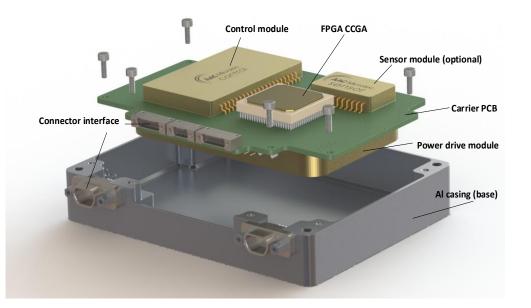
- CANopen stack in SW
- Unconfirmed command and telemetry requests (ECSS-E-ST-50-15) for configuration and status of TCM LEON3FT (PDO)
- Block transfers by SDO for large data transfers depending on mission reqs.
- Time distribution over Spacewire

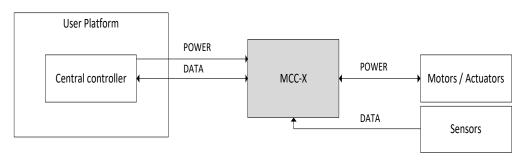
CANopen on Sirius products

 Bus management – Selective bus access one bus at a time – for redundant solution architectures

CAN in ÅAC Microtec products/projects

- Current support for CAN: MCC-X, Avionics
- Ongoing support for CAN/CANopen: Sirius OBC and TCM with LEON3FT
- Planned support for CAN/CANopen: PCDU





Exploration missions technology

MCC-X

- Miniaturized Motor Controller device for ESA eXploration missions based on modularized hybrid electronics
- Estimated 50% mass and volume savings compared to current Mars rover missions
- Modularized design enables usage of off the shelf electronics for a variety of motors and missions
- Small size and low temperature performance enables optimized placement of the electronics and reduced harnessing
- CAN bus simple protocol over CAN Basic data frames with 11-bit identifiers. No extended frames or remote frames.

