

TSIM3 – Emulating the CAN interface of the GR716 microcontroller

Cobham Gaisler Julius Barendt 14 June 2019 CAN in space 2019

Overview

- Introduction
- Why use a simulator?
- Emulating the CAN interface of GR716 in TSIM3
 - The process
 - The problems
 - The solutions

Introduction

Cobham Gaisler and CAN

- CAN expertise
 - All of our processor devices has CAN
 - New devices will have the new CAN cores with DMA (GRCAN/GRCAN-FD)

Introduction

Software support

- RTEMS, VxWorks, Linux and Bare metal
- All CAN interfaces are supported, but support varies by operating system
- Tool-chains and examples

Introduction

Simulator and debugger

• TSIM

- Simulator for LEON and ERC32
- Instruction level simulator
- Highly accurate and extensible
- Standard simulator for LEON

GRMON

Why use a simulator?

COBHAM

Why use a simulator?

Common applications

• No hardware

- Not yet available
- Too expensive
- No space
- Many developers few devices
- Simple to get going
 - No setup times

Why use a simulator?

Validation and verification

- Non intrusive code coverage and profiling
 - No need for custom binaries, test unmodified flight software
- Extended debug capabilities
- Automated testing
 - Scripting
- Deterministic execution

- The goto LEON simulator
 - Highly accurate
- Deterministic behavior
- Highly optimized and easy to use
- Can be used in larger simulation systems

TSIM Extensible

- User extensible
 - -IO bus and AMBA bus device models
 - -Models for connected peripherals
 - -FPU and coprocessor models
 - -Custom instructions
 - -Interrupt controllers

TSIM Modes of operation

- Stand alone
 - Controlled by command line and/or scripts
- Library interface
 - Controlled via C/C++ language API specific for TSIM
 - Parts of TSIM as object files that can be linked into overall system/satellite simulators.
- Remote GDB interface
 - Controlled via GDB command line or via GUI such as Eclipse IDE
 - Thread interface support
 - GDB built for SPARC/LEON distributed with all our tool chains

Non intrusive execution statistics

- Instruction, cache and bus traces
- Execution profiling

TSIM

• Code, decision and data coverage

tsim> profile								
function	ratio(%)							
bcc_crt0	100.00							
main	99.35							
Func_2	31.04							
strcmp	26.97							
memcpy	17.34							
Proc_8	7.70							
Func_1	5.13							
Proc_7	4.49							
Proc_6	1.92							
tsim>								

tsim> cov p	or:	int	t st	trcm	р												
31004198	:	1	1	11	0	1	1	1	11	0	1	1	1	1	1	1	1
310041d8	:	9	1	Θ	0	1	1	1	11	0	1	1	1	1	19	1	1
31004218	:	1	11	1	1	1	9	1	Θ	0	1	1	19	1	1	1	1
31004258	:	1	9	1	0	0	0	Θ	1	1	1	0	0	1	9	1	0
31004298	:	0	0	Θ	0	0	0	Θ	Θ	0	0	0	0	1	1	1	1
310042d8	:	1	1	1	1	9	1	Θ	Θ	0	0	0	0	0	Θ	0	0
31004318	:	0	0	Θ	0	1	1	19	1	1	1	0	0	0	Θ	0	0
31004358	:	0	0	0	0	0	0	0	Θ	0	0	4	0	0	0	0	0

Debugging capabilities

TSIM

- Unlimited breakpoints
- Unlimited watchpoints
- Instruction traces
- Stack back traces with symbolic information
- Check-pointing capabilities, save and restore simulator state
- I/O core event tracing
- RTEMS thread support
- Source level debugging using GDB remote connection

Emulating CAN in TSIM3

CAN in TSIM3

Development process – A new bus model

- Simulation models needed for GRCAN and GRCAN-FD
- Enabling users to develop their own CAN nodes
 - Needs to be easy to use
- Ease the development of CAN applications
 - Diagnostics
 - Error injections

COBHAM

CAN in TSIM3 C API

- Register CAN nodes the TSIM3 internal CAN bus model
- Send messages on the bus, represented by a C struct
- Frame lengths of up to 64 bytes of data, enabeling CAN-FD
- Each messages decides the bit-rate to be sent at

– Data at package level

Flags allowing for custom behaviour, such as error injection

```
struct can_msg {
    unsigned int *data;
    unsigned int flags;
    unsigned int nominal_bitrate;
    unsigned int fd_bitrate;
};
```


Normal node

Sniffer node

CAN in TSIM3

Sniffer node

CAN in TSIM3

Error node for GRCAN

Bit index	Error type
0	Ack error
1	Form error
2	CRC error
3	Stuff error
4	Bit error
31	Error flagged by error passive node

TSIM CAN diagnostics

- Displays number of connected nodes and their status
- Optional status callback to get node specific information directly in TSIM

```
tsim> canbus0_status
Connected nodes: 3
Node id: 0x00000123, status: Normal
Node id: 0x00000000, status: Normal
Node id: 0x00000001, status: Normal
Custom status print from external node: 0x00000123!
tsim> []
```

TSIM3 for GR716 GR716 BETA

- TSIM3 GR716 BETA was released in April 2019
 - Some TSIM3 functionality temporarily disabled in BETA
- New and improved simulation models:
 - LEON3 CPU model updated with:
 - Local I/D RAM with dual-port (DMA and CPU)
 - 31 SPARC register windows
 - Cycle-counter
 - Floating Point Unit (FPU)
 - Register window partitioning
 - Memory controllers with access timings:
 - PROM, MRAM/SRAM interface
 - SPI-Memory controller
 - Atomic and bit-operations on local RAM and APB registers
 - SpaceWire, CAN, UART, SPI master, DAC
 - Timers, GPIO, AHB Status register, IRQMP with time-stamping and 64 remappable IRQs
 - AHBROM including ROM Boot loader & Boot strapping registers

www.gaisler.com/tsim3-gr716

TSIM

TSIM3 for GR716 GR716 BETA

- Supports application load & start from different memory areas
 - Load and run directly from local or external memory
 - Boot using all boot configurations apart from I²C and remote access
 - Allows testing of GR716 Application SW Image format loading and booting
- AHB bus trace now available
- GDB 8.2 source level debugging support
- Faster than real-time, benchmarks show 100-150% of GR716@50MHz

www.Cobham.com/Gaisler

TSIM3 development on-going

TSIM2 and GRSIM successor

- Multiprocessor support
- Support for additional systems
 - GR712RC extended with multi CPU support
 - Quad core GR740
- Support for general system configurations (SoC designs)
- New internal architecture to handle more diverse system architectures
- Tcl scripting support for better automation of tests
- Support for additional I/O cores
- User extension possibilities for custom models
- Continuing the accuracy profile of TSIM2

TSIM3 and GR716

- TSIM3 has been used internally at Gaisler to successfully:
 - Execute RTEMS UP/SMP test-suites in GR712RC single-core and GR740 multi-core GR740 BSPs configurations during ESA LLVM development 2018
 - Used to run VxWorks 7 test-suites in single/multi-core configuration in GR712RC/GR740 controlled by Jenkins
 - Ported Zephyr Operating System to TSIM3-GR716 and used the new Register Window Partitioning successfully
 - Used to develop CAN remote boot demo for GR716

