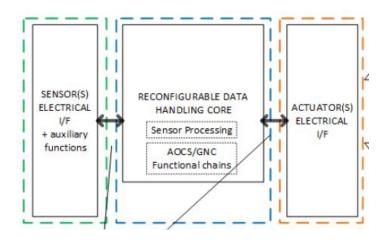
COBHAM

Compact Reconfigurable Avionics – Reconfigurable Data Handling Core CoRA-RDHC

TEC-ED & TEC-SW Final Presentation Days 3-4 December 2019

Presenter: Arne Samuelsson, Cobham Gaisler


Agenda

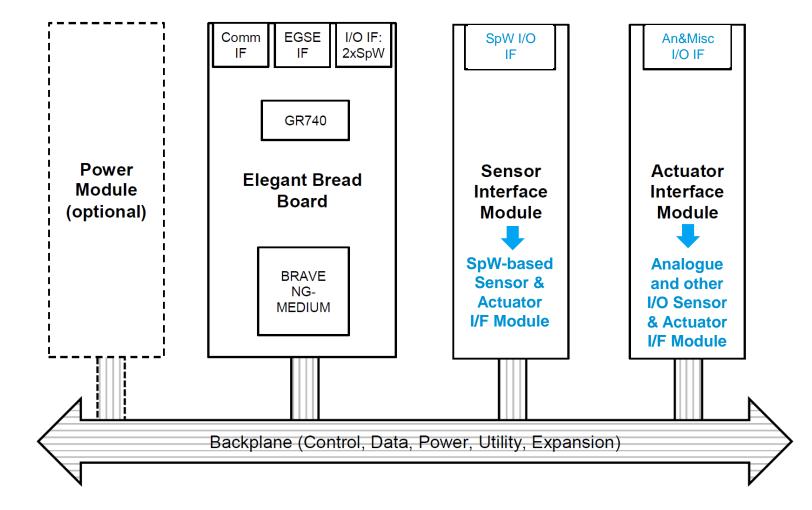
Objectives Summary

- Development of an Elegant Bread Board
 - A compact reconfigurable datahandling core module
 - High performance microprocessor and high capacity reconfigurable FPGAs
 - Clear path to space qualification
 - Accompanied by I/O interface modules
- Delivery of a SW development platform
 - Bread Board based on COTS
 - Identify, procure and make available to the parallel activities by PDR
- Development of Board Support Package
 - FPGA communication and reconfiguration
 - Communication interfaces towards external sensors and actuators
- Development of Boot SW
- Installation of the compact reconfigurable avionics testbed at the ESTEC Avionics laborator

Organization

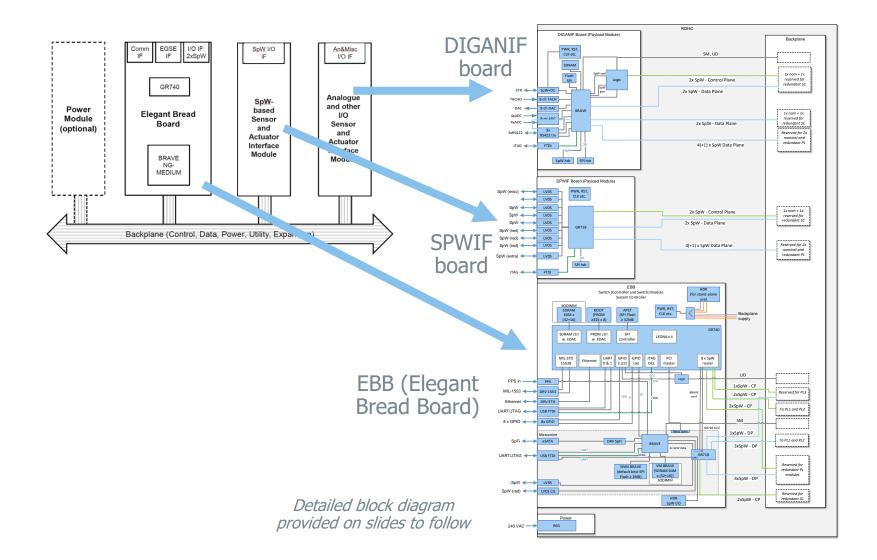
- ESA
 - Technical Officer: Jørgen Ilstad, TEC-EDD -> EOP-PPE
- Cobham Gaisler AB, Sweden (prime)
 - Responsible for the development of hardware, VHDL design, boot software and drivers
- Thales Alenia Space France
 - Responsible for middleware software design
- Thales Alenia Space España S.A., Spain
 - Responsible for FPGA reconfiguration code
- Airbus Defence & Space, France
 - Contribution to the systems analysis and trade-off, requirements and system architecture
- External service providers
 - Responsible for breadboard development

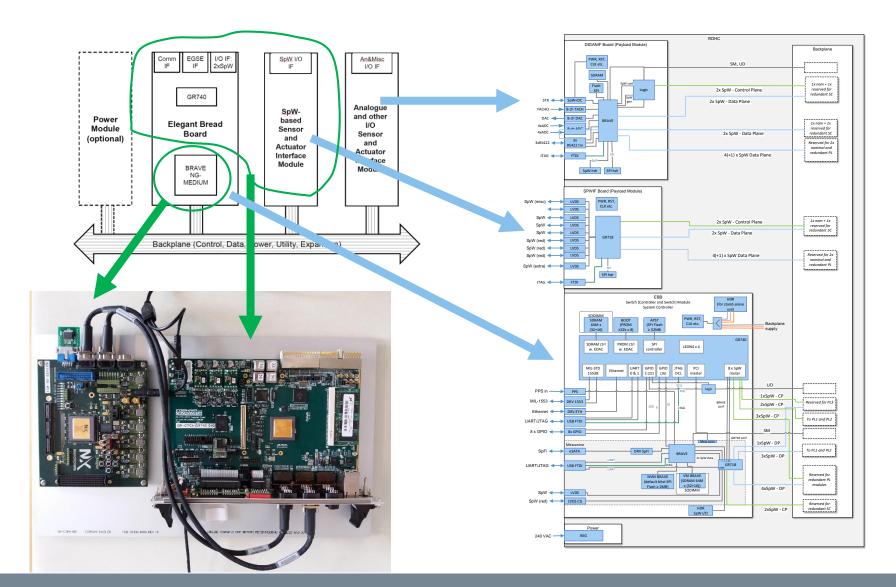
Prerequisites Summary

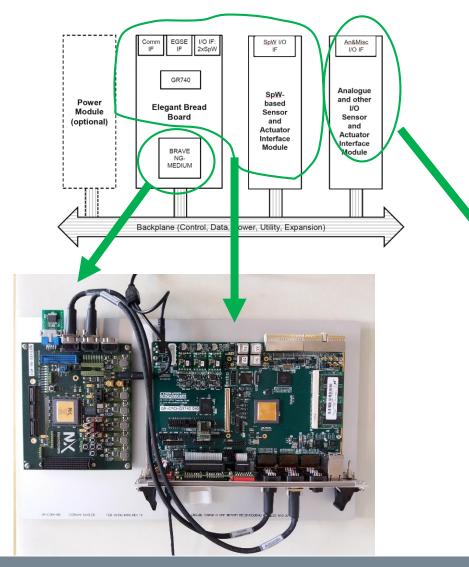

- GR740 Quad-Core LEON4 SPARC V8 Processor
 - Controller and high-performance processing

FPGA BRAVE NG-Medium

- European, existing, SpW-reconfigurable
- Common form factor
 - EBB and I/O modules
- I/O interfaces to be consolidated with the CORA-SAGE activity
- SW platform to be consolidated with the CORA-MBAD activity

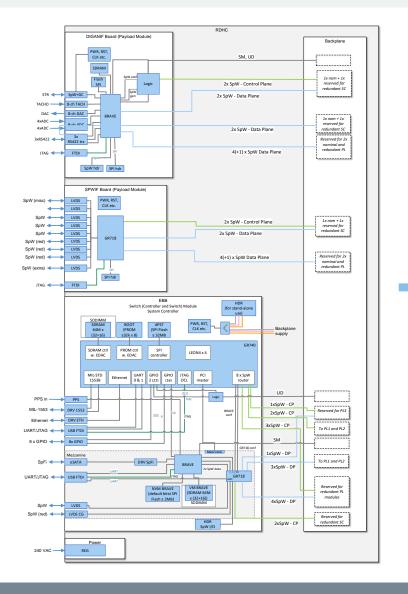

Concept After CORA interface consolidation


System design For COTS BB and final RDHC


System design For COTS BB – GR-CPCI-GR740 and NX1H35S-EK

System design For COTS BB – with DIGANIF Light

COBHAM


- Enables testing of Analogue and other I/O Interfaces for SAGE
- Developed prior to final RDHC
- Mezzanine for BRAVE Evaluation Kit

RDHC design From Block diagram to Detailed Design

COBHAM

Many design iterations in areas of:

- Form factor
 - OpenVPX, VITA 65 (3U, 6U)
 - SpaceVPX, VITA 78.0 (3U, 6U)
 - SpaceVPXLite, VITA 78.1 (3U)
 - Others
- I/O interfaces
 - Specifications
 - Adaptations to SAGE activity
- Redundancy concepts
 - Backplane profile
 - Board designs
- Reconfiguration options
 - On-board and between boards
- Design support for future
 - Flight parts
 - Backplane profiles

- Form factor VPX 6U selected
 - Front-panel interfaces dimensions
 - Driven by large connectors used in space applications
 - Lots of I/O distributed externally to the unit, is generally required for most applications
 - The need for power condition circuitry for many power supply rails coupled with lack of small footprint space qualified components
 - Additional PCB real-estate to achieve fault tolerant designs
 - Thermal design constraints drive module size to be become large
 - Thus 3U module size is inadequate to meet the above-mentioned design drivers

RDHC design Form factor

- OpenVPX 6U selected
 COTS backplanes availability
 Backplane profile 11.2.5
 Centralized Data Plane
 Similar SpaceVPX Backplane Profiles
- EBB

- For Switch Slots
- I/O Modules
 - For Payload Slots

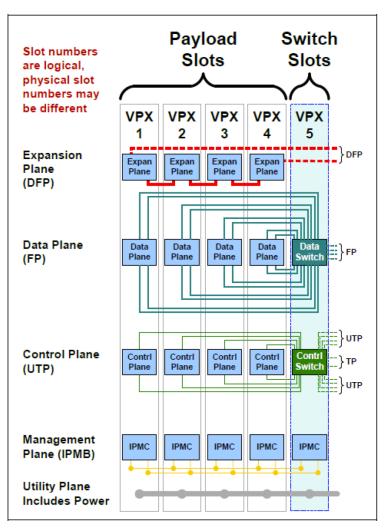


Figure 11.2.5-1 Topology of BKP6-CEN05-11.2.5-n

RDHC design Form factor – forward compatibility

COBHAM

- SpaceVPX Backplane Profile 11.2.5
- EBB
 - Controller & Switch Slot
 - Factory-configuration needed
- I/O Modules
 - Payload Slots
 - Factory-configuration needed
- Designed to support redundant pairs
- No testing in the CORA activity
- Non-compliance: SpW used in Data Plane
 - Mainly driven by the lack of support for high speed serial links in the selected FPGA technology (BRAVE NG-Medium)
- Upgrade of the EBB FMC mezzanine will allow full compliance to the VITA dataplane in using high speed serial links e.g. SpaceFibre.

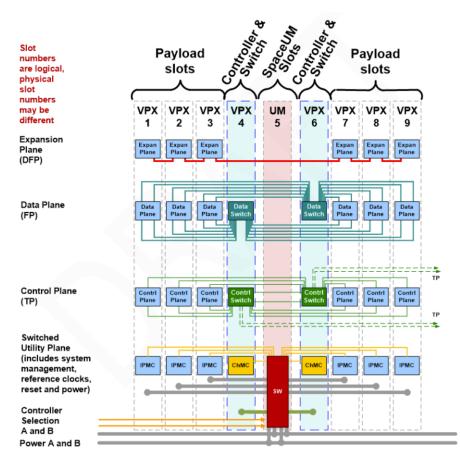
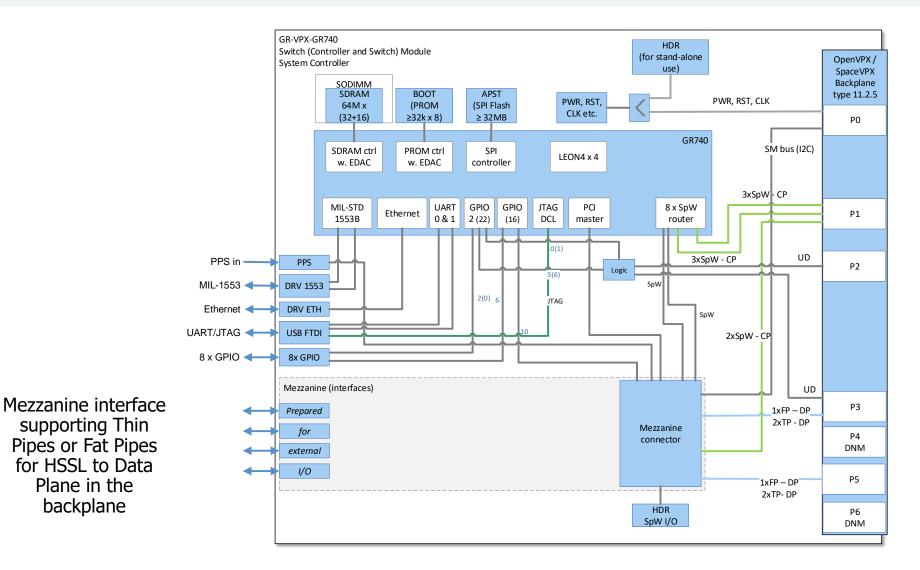
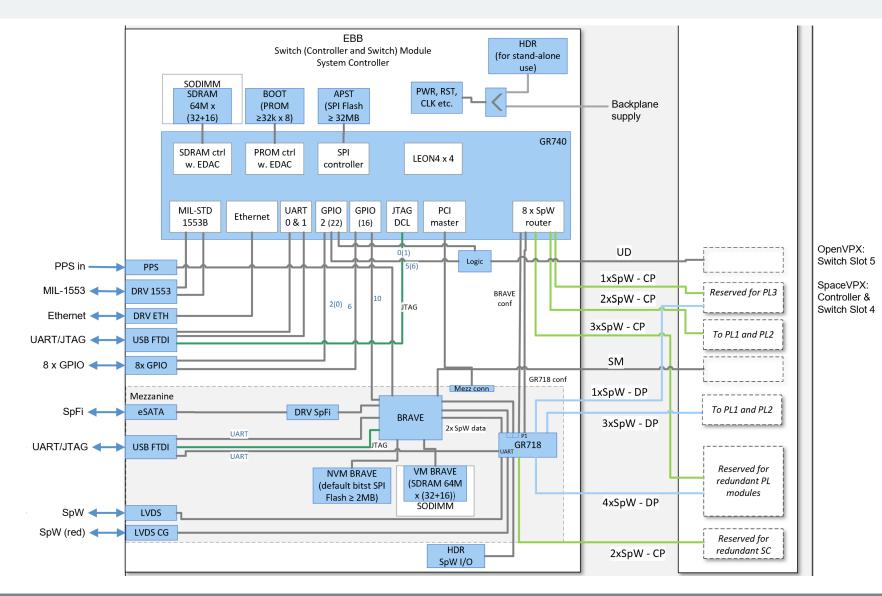



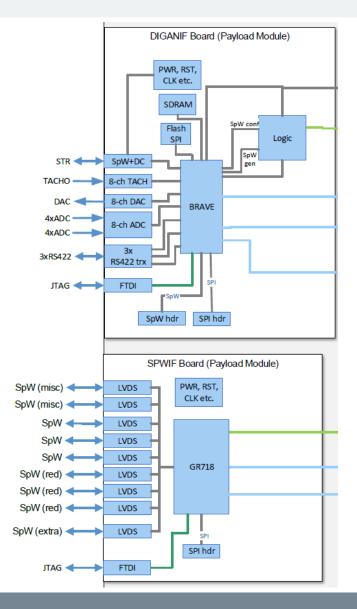
Figure 11-4: Topology of BKP-CEN10-11.2.5-n

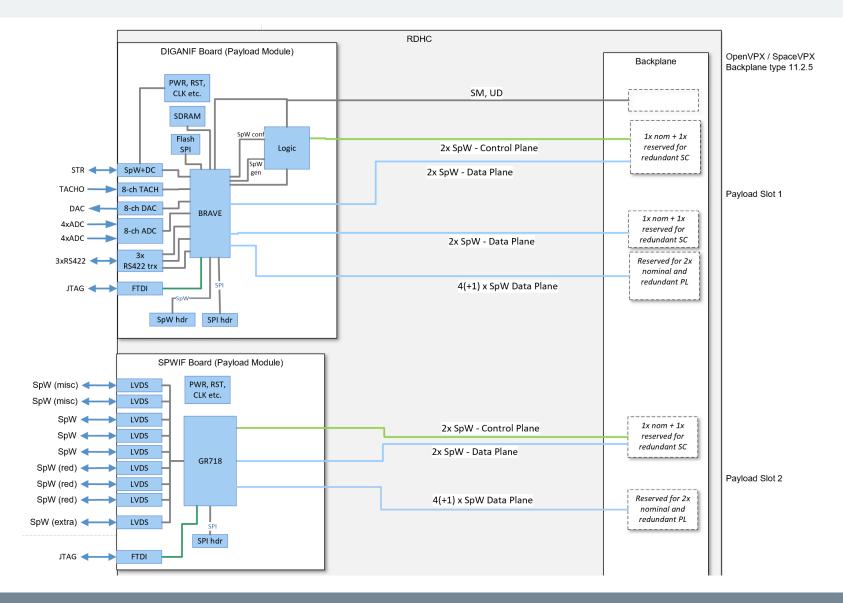
RDHC design EBB design for forward-compatibility


RDHC design

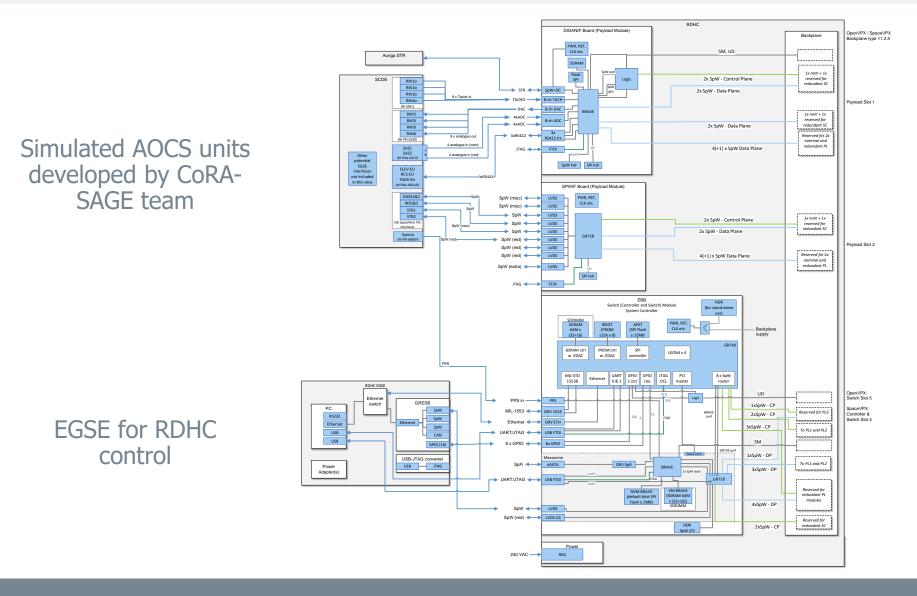
- Interfaces adapted to CORA-SAGE activity
- Supporting redundancy concepts
- Stand-alone or backplane operation
- GR740 on Main Board
- BRAVE NG-MEDIUM and GR718B on Mezzanine
 - For use in CORA
 - SpW-based reconfiguration of FPGA
 - SpFi interface routed in hardware
- Support for future Mezzanine boards
 - PCI from GR740
 - High-performance FPGA
 - SpFi routing to Data Plane
 - SpaceVPX-supported protocols

RDHC design EBB with BRAVE Medium Mezzanine

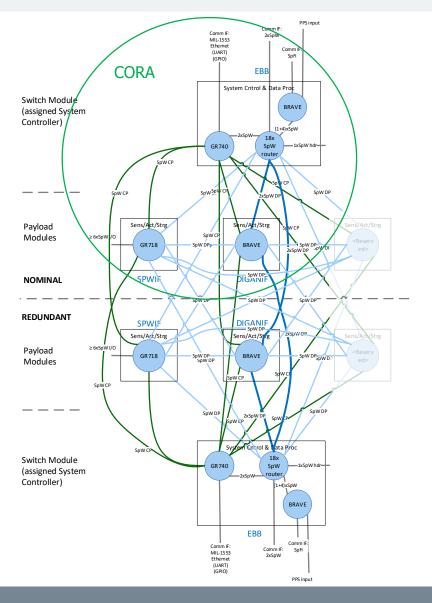



RDHC design I/O Modules

- Mainly for CORA use
- Interfaces adapted to CORA-SAGE activity
- Supporting SpW-based redundancy concepts
- Stand-alone or backplane operation
- Limitations: no HSSL in Data Plane, no formal SpaceVPX compliance
- DIGANIF board
 - BRAVE NG-Medium
 - PCB design for SpW reconfiguration
 - SPI bitstream in CORA
- SPWIF board
 - GR718B
 - Mainly a SpW router board
 - Supporting the three redundant pairs of SpW instrument



RDHC design Summary overview - complete CORA hardware system



RDHC design Module-redundant architecture

- Path-to-flight concept
- Dual-star Control and Data Plane
- PCB design prepared
- EBB supporting SpFi on Data Plane needs updated Mezzanine

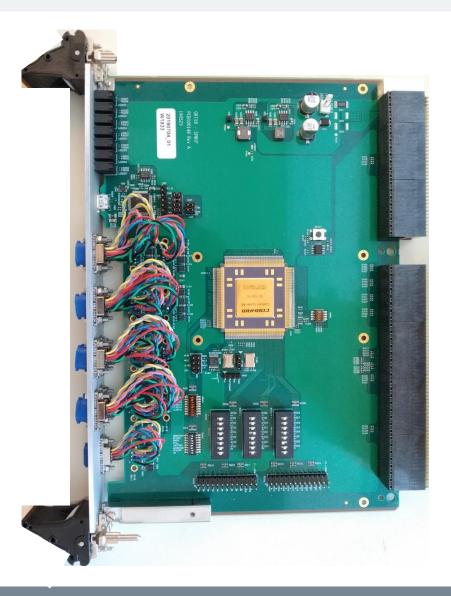
RDHC hardware EBB – Main Board

- GR-VPX-GR740
- GR740, SDRAM, SPI Flash
- Illustrated with Mezzanine Board
- Development completed

RDHC hardware EBB – Mezzanine

- GR-VPX-BM-MEZZ
- BRAVE NG-Medium (ceramic), GR718, GR54LVDS049, SDRAM, SPI Flash
- Development completed

RDHC hardware DIGANIF board


- GR-VPX-DIGANIF
- BRAVE NG-Medium (plastic), digital and analogue interfaces
- Development completed

RDHC hardware

- GR-VPX-GR718
- GR718B SpaceWire router
- 9 external SpW interfaces
- Development completed

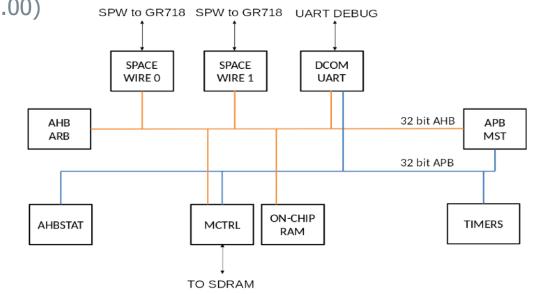
RDHC hardware Chassis and cabling

COBHAM

- Chassis
 - ELMA 6U, 5 slots
 - OpenVPX Backplane profile
 11.2.5
 - Procured and delivered

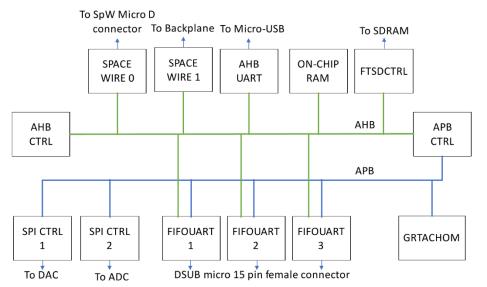
Other hardware developed:

- I/O cabling
 - Custom-designed
 - RDHC to SCOE (SAGE) interface
 - Development completed



VHDL EBB – BRAVE on Mezzanine

- IP cores used
 - SpaceNet RMAP IP Core (v 1.00)
 - AHBARB
 - AHB arbiter and decoder
 - APBMST
 - AHB/APB bridge
 - AHBRAM
 - On-chip RAM with AHB slave interface
 - TIMERS
 - Two general purpose timers and one watchdog
 - DCOM
 - UART for debug support unit
 - MCTRL
 - Controlling 128 MByte of usable external SDRAM with EDAC
 - AHBSTAT
 - AHB status register. Latches the address and bus parameters when an error is signaled on the AHB bus



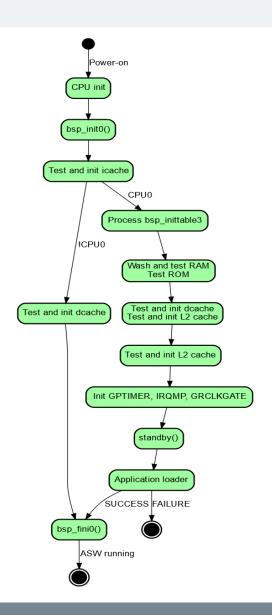
VHDL BRAVE on DIGANIF

Modules included

- One SpaceWire codec
 - With AHB host Interface and RMAP targets
- Three UARTs
 - With FIFO and separate baud rate generators
- Two SPI controllers
 - Configured as SPI master, with one slave select signal and FIFO depth equal to 8
- One AHB UART
 - Usable as a debug Link
- An on-chip RAM
 - Size 2 KB
- A GRTACHOM IP
 - To acquire (measure) the RW Discrete Digital Tacho inputs

Software

Overview – execution platform



- Application layer with an abstraction suitable for RDHC operation
- Main components
 - RTEMS 5.1 SMP
 - RDHC BOOT SW
 - RDHC BSP and Drivers (HDSW)
 - RDHC FPGA Reconf. Engine (for BRAVE Medium)
 - LVCUGEN LIBPUS from CNES
 - RDHC Middleware

ASW(s)	
Standby SW	
Middleware Software Execution Platform	
Middleware	
SVC 1/3/5/6/(20)8 ENGINE	ртр
Subnet Access Services design router	
Software Initialization	
RTEMS	
Operating System Abstraction Layer	
BOOT SW HDSW / RTEMS SMP R	BSP
HARDWARE	

- GR740/RDHC Boot SW
- Compliant with ESA initialization requirements
- Peripheral initialization
- Self-tests
- Application loader
 - Application stored in SPI flash
- Support for SMP boot
 - RTEMS
 - Linux, VxWorks
- Available as a product outside CORA

• RDHC Drivers (SW, validation tests, API and doc.)

- SPI controller
- SPI flash
- GPIO
- Timer
- Clock gating unit
- RTEMS-5 provided drivers
 - SpaceWire DMA
 - SpaceWire router
 - UART
- Also provided
 - RMAP transaction example
 - SPI flash access example

The middleware provides PUS services over SpaceWire:

- Service 1: TC ack and completion
- Service 3: Housekeeping TM report management
- Service 5: Event report management
- Service 6: Memory management for accessing non-volatile memories
- Service 8: Function management for custom commands

Service 6 and 8 allows for

- Upload a file to the on-board FPGA bit-stream memory
- Initiating FPGA reconfiguration using the FPGA reconfiguration engine.

FPGA reconfiguration engine

- Interface to reconfigure the FPGA on the EBB
- FPGA bitstream selected through a run time parameter
- Integrity control

Three parallel CORA activities

- Requirements and interfaces defined during the activities
- External dependency
- Focus of eliminating blocking points
- Consolidation at workshops
- Top-level "system managers" for all three activities from both ESA and industry could have been beneficial

• In addition, another dimension of requirements

- Consolidation with ESA
- Path to flight
 - Redundancy concepts
 - Form factor
- Platform for reconfiguration concepts
- Sometimes driving the schedule but not being beneficial for the triple-CORA activity (but justified for other reasons)

Complex hardware

- Backplane interfaces allowing up to 728 pins for each board
- Careful end-to-end reviews recommended for signals over backplanes
- ► Do not mount unused connectors (to limit board insertion forces)

New technologies

- Characteristics of BRAVE Medium components were not fully known
- Synthesis tool for BRAVE Medium was not fully mature
- ► Margins in duration and resources needed

Support to external parties

- The amount of HW- and SW-support provided by RDHC to the other CORA activities was underestimated at project kick-off
- ► Workload for support should be planned from start

COTS BB platform delivered

- Supporting MBAD and SAGE activities
- RDHC hardware developed and delivered
 - One rack with all three modules plus I/O cabling verified and delivered
 - Currently in use with the CoRA-SAGE team for closed-loop testing.
- FPGA design
 - VHDL source code delivered for BRAVE NG-Medium on the Processing Module
 - FPGA bitstream delivered for the I/O module

• Software developed

- Boot software and basic drivers verified and delivered
- Middleware software tested and delivered
- FPGA reconfiguration software tested and delivered
- User manuals for all hardware and software delivered
- Duration
 - Approx. 6 month longer for HW deliveries than originally planned
 - Main reasons: comprehensive hardware analyses and extensions, plus triple-activity dependencies

• In the CORA-RDHC activity

- Prepare and perform ESTEC Avionic Lab testing with CORA partners
- Complete related deliverables
- Potential post-CORA use
 - Commercialize parts of the hardware, whereof in near-time
 - The 2nd GR-VPX-GR740 (EBB) has been manufactured
 - Draft datasheets available
 - The OpenVPX rack is a defined product
 - Development of mezzanine for GR-VPX-GR740 supporting HSSL
 - On-going planning
 - BRAVE Large replacing BRAVE Medium on Mezzanine and DIGANIF
 - Platform for other ESA activities

Thank you for your attention!

