

03/12/2019



#### CoRA SAGE: Smart AOCS&GNC Elements Final Presentation

#### Juan Manuel del Cura

#### Index CoRA SAGE

- Objectives
- CoRA SAGE Consortium
- Baseline Mission
- CoRA SAGE AOCS/GNC Modes
- CoRA SAGE EGSE
- Star Tracker Unit
- Validation Approach
- Testing
- Conclusions & Next Steps

Attitude and Orbit Control Subsystem

Guidance Navigation and Control

Electrical Ground Support Equipment



# **CoRA SAGE** Objectives





Aeroespacia





Low Earth Orbit AOCS/GNC heritage



SENERIC

Star tracker on a chip

**Reusable Models** 



GO Jest IT

Compliance

**Risk Mitigation** 

Experienced consortium

High pointing accuracy AOCS heritage

Atmospheric Entry GNC



Deep AOCS/GNC EGSE knowledge



Multidisciplinary

and Functions



EGSE Reconfigurability

Experienced KP



Coordinated teams towards a common goal



#### CoRA-SAGE



#### **Objectives** CoRA-SAGE **SAGE** product **AOCS/GNC Modes** STR HW Fine Pointing Mode ٠ spacewire Safe Mode ٠ **Re-entry** ٠ -OGSE -OHU AOCS/GNC Modes • SAGE EGSE ethernet Reconfigurable DH Core (CFI) • Star Tracker OH Simulated AOCS Units EGSE (PXI based) spacewire STR Elec. I/F RS422 <u>SAS</u> CAN BUS • Star Tracker OGSE IMU analog GNSS .... FADS • RW -MMI Host SW Star Tracker SW -Real Time SW • THR -EGSE HW STR SW Elevon -Test Support Tools -acquisition **Dynamic and Kinematics Environment** -tracking

Optical Head Optical Ground Support Equipment



#### **Objectives** SAGE development flow





## **CoRA SAGE** Consortium





#### Consortium



10



www.aerospace.senel

## **CoRA SAGE** AOCS/GNC Modes



#### CoRA SAGE AOCS/GNC Modes Baseline Mission

- CoRA SAGE baseline mission is Space Rider
- Space Rider is a reusable orbital vehicle designed to fly up to 6 times to carry out Earth Observation, Microgravity, Telescope and Rendez-Vous missions.
- Space Rider will be composed by an Orbital Service Module (OSM) and a Re-Entry Module (REM)
- Orbital mission and Re-entry serve as reference scenarios for CoRA-SAGE development
- SENER is responsible of the GNC subsystem, which has a strong heritage from IXV GNC
- CoRA SAGE baseline frozen on September 2017
- Space Rider mission has evolved since then -> Successful CDR on November 2019
- CoRA SAGE has not implement all changes in Space Rider configuration -> Not Space Rider anymore



Intermediate eXperimental Vehicle

#### CoRA SAGE AOCS/GNC Modes Baseline Mission

- Some results from SR CDR.
- Space Rider reentry module landing requirements fully met even with large wind knowledge errors
- Landing accuracy requirement of **150m** fully met even with large wind knowledge errors







#### CoRA SAGE AOCS/GNC Modes AOCS/GNC Mode selection

- In CoRA SAGE study, the following Space Rider-based AOCS/GNC modes are used as reference:
  - Safe Mode (SFM)
  - Fine Pointing Mode (FPM)
  - Re-Entry Mode (REM)
- This mode selection requires a large set of AOCS/GNC units, including:
  - Star Trackers (STR)
  - Global Navigation Satellite System (GNSS)
  - Inertial Measurement Unit (IMU)
  - Sun Acquisition Sensors (SAS)
  - Flush Air Data System (FADS)
  - Reaction Wheels (RW)
  - Reaction Control System (RCS)
  - Entry Elevons (ELEV)





#### CoRA SAGE AOCS/GNC Modes Fine Pointing Mode (1/3)

- Objective:
  - Points the cargo bay to Nadir:
  - Earth Observation.
  - Micro-gravity experiments (aerodynamic drag is minimized for this attitude).
- Requirements:
  - Use primary sensors:
    - STR in Attitude Tracking Mode.
    - GPS in Attitude Tracking Mode.
  - Use RWs as actuators.
  - APE < 0.05°.
  - AMPE < 0.02°.
- Space Rider Configuration:
  - Solar panels perpendicular to X\_CGB.
  - STR boresight axis parallel to+ Y\_CGB. Sun is out STR FoV with this lay-out.



www.aerospace.sene



#### CoRA SAGE AOCS/GNC Modes Fine Pointing Mode (2/3)

- AOCS units:
  - STR x1: AURIGA Simulink model provided by Sodern
  - GPS antenna x1
  - RWs : 4 wheels in pyramidal configuration.
  - Modelling: heritage of SENER validated models.
- Control objectives:
  - Cargo bay pointing to Nadir:
  - Z\_CGB parallel to the Nadir direction
  - Minimize aerodynamic forces:
    - X\_CGB parallel to the velocity vector
  - Keep the same attitude during the orbit:
    - Y\_CGB parallel to the orbital angular momentum
    - Rotate with the orbital angular rate around -Y\_CGB





www.aerospace.sen





#### **CORA SAGE AOCS/GNC Modes** SaFe Mode (1/3)

- Objective:
  - Point the sun with the solar arrays in a fixed position.
- Requirements:
  - Use redundant sensors: SAS and IMU.
  - Use RCS as actuator.
  - APE < 15°.
- Space Rider Configuration:
  - Properties frozen at SR status in 05/18
  - Solar panels perpendicular to Z\_CGB.
  - SAS boresight axis is parallel to -*Z\_CGB*.





#### CoRA SAGE AOCS/GNC Modes SaFe Mode (2/3)

- AOCS units:
  - SAS x1 (redundant units not included in the design)
  - IMU x1
  - RCS : 6 Thrusters of 220N
  - Modelling: heritage of SENER validated models.
- Control Objectives:
  - Keep SAS and Solar arrays illuminated:
    - Z\_CGB parallel to the Sun direction ( $\alpha = \beta = 0$ )
  - 3-Axis control:
    - Null  $\omega^{2}$
  - Align SAS and Solar panel to the Sun after eclipse period:
    - Use GYR measurements to integrate angular error when SAS is not illuminated





#### **CORA SAGE AOCS/GNC Modes** SaFe Mode (3/3)

2.200 m **Objective:** orient the solar arrays towards the Sun XSASF 350 m 2.250 m AOCS/GNC units: Sun Sensor (SAS), Inertial Measurement Unit, Thrusters (THR) Y<sub>SASF</sub> Safe Mode Reconfigurable DH Core Mathematical Models EGSE SpaceWire Gyro Electriical Analog SAS **Orbital DKE** 

THR

2.000 m

4,400 n

www.aerospace.sene

2.750 m

RS422

#### CoRA SAGE AOCS/GNC Modes Re-Entry Mode (1/3)

- Objective:
  - Implementation of a safe re-entry trajectory based on IXV upto parachute deployment. ensuring to fly within the entry corridor.
  - Implementation of a FDI function for handling failures in FADS sensor during re-entry and convey the information to Flight Management for reconfiguration
- Requirements:
  - Use redundant sensors: FADS, IMU and GNSS.
  - Use RCS and Elevons as actuators.
- Space Rider Configuration:
  - Properties frozen at SR status in 05/18
  - Velocity along +X\_CGB.





#### CoRA SAGE AOCS/GNC Modes Re-Entry Mode (2/3)

- AOCS units:
  - FADS x1
  - IMU x1
  - GNSS antenna x1
  - RCS : 6 Thrusters of 220N
  - Elevons
  - Modelling: heritage of SENER IXV validated models.
- Control Objectives:
  - Keep the trajectory within the entry corridor
  - Detect and isolate FADS sensor failures
  - Provide inputs for reconfiguration



#### **CORA SAGE AOCS/GNC Modes Re-Entry Mode**

- **Objective:** follow nominal trajectory
- AOCS/GNC units: GNSS, INS, FADS, THR, Elevons

 Dynamics, Kinematics and Environment (DKE) Models: mathematical models employed in IXV design, verification and validation



#### CoRA SAGE AOCS/GNC Modes Summary

Complexity

- Safe Mode (SFM)
- Fine Pointing Mode (FPM)
- Re-Entry Mode (REM)



Reconfiguration scenario



# CORA SAGE



#### EGSE Background



Special Check Out Equipment

#### EGSE Reusing HW & SW Elements

- MMI: Reused and modified from ExoMars and MTG
- National Instruments PXI & Labview: Used in previous SCOEs and EGSEs in Sener.
- SAS Simulation: simulating Solar cells with current output boards. Used in previous SCOEs
- FPGA to simulate Tachometer: Simulating Tachos/second from RW reusing sections of code from MTG RW's





27

#### CoRA EGSE 2019



#### **EGSE** New additions in CORA SAGE

- Spacewire: used to simulate STR
- Auriga STR OGSE: simulating a map of stars depending on the quaternion provided by the DKE.
- Synchronization Board: used to provide a stable timing reference to the EGSE system.







#### CoRA EGSE 2019



#### **EGSE** Functional Diagram

- MMI: operate locally the CoRA-SAGE EGSE
- Controller: coordinates the operation of all components
- Real Time Simulator: implements the environment and spacecraft dynamics models
- AOCS/GNC units: front end interfaces to the equipment under test and the simulation and stimulation functions





29

#### EGSE Product Tree



30

#### EGSE Characteristics

- Real Time (RT) simulation:
  - Scheduler at 200 Hz
  - Math Models (AOCS units and DKE)
- Data-pool & Smart Mapping
- Archive all data. Log events and errors
- Telemetries and Telecommands with MMI
- Electrical IF:
  - SpaceWire protocol
  - RS422
  - Analogue & Digital Acquisition + FPGA tachometer
  - Current Outputs for SAS





#### EGSE HW Elements

- 1. PXI Chassis & PXIe8840 Quad Core
- 2. SPW 4 port board
- 3. Sync PXI-6683H
- 4. NI PXI 6230 Multifunction DAQ
- 5. NI 4322 Analog Output
- 6. NI 7691 FPGA & NI 6581 I/O
- 7. NI PXIe 8431/8















7. 8431 - RS422 RCS OSM + REM, ELEV, FADS



2 different designs for 2 different phases:

#### **OSM** Phase

- ✓ DKE OSM Math model
- ✓ Sensor & Actuators math models
- ✓ Electrical IF for every unit / model

#### **REM Phase**

- ✓ DKE REM Math Model containing sensor and actuators models.
- ✓ Electrical IF for every unit / model



#### EGSE HW MAtrix

| Board Model          | Board Name                 | SW Module | Signal | Interface         |
|----------------------|----------------------------|-----------|--------|-------------------|
| PXIe-8840-RT         | PXI Controller             | MMI-IF    | TMTC   | MMI Host Computer |
|                      |                            | STR       | LAN    | STR OGSE          |
| PXI-6683H            | Synchronisation board      | GNSS      | PPS    | RDHC              |
| PXIe-8431/8          | RS-422 Board               | OSM RCS   | RS422  | RDHC              |
|                      |                            | REM RCS   | RS422  | RDHC              |
|                      |                            | ELEVON    | RS422  | RDHC              |
|                      |                            | FADS      | RS422  | RDHC              |
| SpW PXI interface    | SpaceWire Board            | INS       | SpW    | RDHC              |
|                      |                            | STR       | SpW    | RDHC              |
|                      |                            | GNSS      | SpW    | RDHC              |
| PXIe-4322            | Current Output Board       | SAS       | AO     | RDHC              |
| PXIe-7961R + NI 6581 | Digital Input/Output Board | RW        | DO     | RDHC              |
| PXI-6230             | Analogue Input Board       | RW        | AI     | RDHC              |
|                      |                            | RW        | DI     | RDHC              |



www.aerospace.sener

#### NI PXIe8431/8 - RS422

RCS OSM @ 4 Hz & REM @ 20 Hz
✓ Shared Electrical IF
✓ Port 0 pinout, 68-60 pins

ELEVON @ 20 Hz ✓ Port 1 pinout, 60-52 pins

FADS @ 20 Hz ✓ Port 2 pinout, 51-43 pins

Parameters introduced by Labview VISA Driver

| Start Bit | Data Bits | Parity Bit | Stop Bit |  |
|-----------|-----------|------------|----------|--|
| 0         | 1-8       | 9          | 10       |  |
| 0         | Data Bits | ODD        | 1 Bit    |  |



CTS-

RTS-

TXD+

TXD-

#### SPW 4 port board

INS 1 & 2 @ 200 Hz
✓ Shared Electrical IF
✓ Port 0 pinout, 68-60 pins

STR @ 4 Hz ✓ Port 1 pinout, 60-52 pins

GNSS 1 & 2 @ 1 Hz ✓ Port 2 pinout, 51-43 pins

SPW Added Header✓ 4 Bytes added to match standard

| Star Dundee PXI port assign | ation SW Unit assigned |
|-----------------------------|------------------------|
| Port / Channel 1            | STR                    |
| Port / Channel 2            | INS                    |
| Port / Channel 3            | GNSS                   |
|                             | Sin- Sout+ Dout+       |
| ODW/ Data Usedar            | ONIOO Data Davivat     |

| SPW Data Header | GNSS Data Packet                   |  |  |  |
|-----------------|------------------------------------|--|--|--|
| 4 Bytes         | 56 Bytes                           |  |  |  |
| 0×FE020000      | Message 1 (0-27) Message 2 (28-55) |  |  |  |
|                 | TOTAL 60 Bytes                     |  |  |  |



#### NI PXI-6230 M Series Multifunction DAQ - RW

**Torque Acquisition** 

✓ Torque pins A0-A3

✓ Range 0 to 10V

Sign Acquisition

✓ Sign pins, PFI 1-4 (P0.0-P0.3)

✓ 0 to +0.8 V "low" / 2 to 5.5 V "high"

NC = No Connect



#### NI-TB-4322 8 Ch. Analog Output. SAS

| SAS 1 @ 200 Hz               | Channel / Cable   | Connector type                      | Range                   | Frequency      | Use             |
|------------------------------|-------------------|-------------------------------------|-------------------------|----------------|-----------------|
|                              | Channel / Cable 0 | Shielded twisted pair cable         | 0 to +3.6 mA +/-<br>10% | 200 Hz         | SAS 1 Current 0 |
| ✓ CH/ Cable 0 – 3            | Channel / Cable 1 | Shielded twisted pair cable         | 0 to +3.6 mA +/-<br>10% | 200 Hz         | SAS 1 Current 1 |
| ✓ Range 0 to 3.6mA           | Channel / Cable 2 | Shielded twisted pair cable         | 0 to +3.6 mA +/-<br>10% | 200 Hz         | SAS 1 Current 2 |
| ✓ Twisted pair cables        | Channel / Cable 3 | Shielded twisted pair cable         | 0 to +3.6 mA +/-<br>10% | 200 Hz         | SAS 1 Current 3 |
| SAS 2 @ 200 Hz               | Channel / Cable 4 | Shielded twisted pair cable         | 0 to +3.6 mA +/-<br>10% | 200 Hz         | SAS 2 Current 0 |
| $\checkmark$ CH/ Cable 0 – 3 | Channel / Cable 5 | Shielded twisted pair cable         | 0 to +3.6 mA +/-<br>10% | 200 Hz         | SAS 2 Current 1 |
|                              | Channel / Cable 6 | Shielded twisted pair cable         | 0 to +3.6 mA +/-<br>10% | 200 Hz         | SAS 2 Current 2 |
| ✓ Range 0 to 3.6mA           | Channel / Cable 7 | '<br>Shielded twisted<br>pair cable | 0 to +3.6 mA +/-<br>10% | 200 Hz         | SAS 2 Current 3 |
| ✓ Twisted pair cables        | 38                |                                     | www.a                   | erospace.sener | SENE            |

#### NI 6581 for FPGA. Tachometer

Tacho signal

- ✓ DDCA P0.0 P0.3 for RW1 RW4
- $\checkmark$  0 V for "0" / 3.3 V for "1"

Tacho sign

✓ DDCA P0.4 - P0.7 for RW1 - RW4

 $\checkmark$  0 V for "0" / 3.3 V for "1"

|                | DDCA     |           |                   |               |
|----------------|----------|-----------|-------------------|---------------|
|                | $\frown$ |           | <u></u>           |               |
| (              |          |           |                   |               |
| GND            | 68 34    | GND       |                   |               |
| GLOBAL CLOCK 0 | 67 33    | CLOCK OUT |                   |               |
| GND            | 66 32    | GND       |                   |               |
| P0.0           | 65 31    | P0.1      | 1                 |               |
| PFI 2          | 64 30    | PFI 3     |                   |               |
| P0.2           | 63 29    | P0.3      | (Yatata           | 6- <b>1</b> ] |
| GND            | 62 28    | GND       |                   |               |
| P0.4           | 61 27    | P0.5      | 1 🖧               | <b>n</b> :    |
| No Connect     | 60 26    | PEL1      |                   |               |
| P0.6           | 59 25    | P0.7      |                   | 8             |
| GND            | 58 24    | GND       |                   |               |
| P1.0           | 57 23    | P1.1      |                   |               |
| GND            | 56 22    | GND       |                   |               |
| P1.2           | 55 21    | P1.3      |                   |               |
| GND            | 54 20    | GND       |                   |               |
| P1.4           | 53 19    | P1.5      | ill °             | A             |
| GND            | 52 18    | GND       | A D               |               |
| P1.6           | 51 17    | P1.7      | 10                |               |
| GND            | 50 16    | GND       |                   |               |
| P2.0           | 49 15    | P2.1      |                   |               |
| GND            | 48 14    | GND       |                   |               |
| P2.2           | 47 13    | P2.3      |                   | ž 📔           |
| GND            | 46 12    | GND       |                   |               |
| P2.4           | 45 11    | P2.5      |                   |               |
| GND            | 44 10    | GND       |                   |               |
| P2.6           | 43 9     | P2.7      |                   |               |
| GND            | 42 8     | GND       |                   | FH .          |
| RESERVED       | 41 7     | RESERVED  | 100 MH<br>Distant | <b>1</b>      |
| GND            | 40 6     | GND       |                   | <u> </u>      |
| RESERVED       | 39 5     | RESERVED  |                   |               |
| GND            | 38 4     | GND       |                   |               |
| RESERVED       | 37 3     | RESERVED  |                   |               |
| GND            | 36 2     | GND       |                   | 1             |
| RESERVED       | 35 1     | RESERVED  |                   |               |
|                |          |           | 1 1               |               |
|                | $\sim$   |           | .                 |               |



| FCSF                             | Channel / Port | Connector type                                                                               | Range                                        | Frequency                                                                                                                      | Use               |
|----------------------------------|----------------|----------------------------------------------------------------------------------------------|----------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------|-------------------|
| Interfaces                       | PFI 0          | SMB 210 Cable,<br>Dual SMB Plug to<br>Dual SMB Plug<br>Coax 50 Obm                           | 0V "typical low" /<br>3.3V "typical<br>high" | 1 Hz                                                                                                                           | 1 Hz PPS for GNSS |
| Sync Board NI PXI 6683H          |                | PFI<02>                                                                                      |                                              |                                                                                                                                |                   |
| Port 0                           |                | Output Characteristics                                                                       | DC to 50 MHz                                 |                                                                                                                                |                   |
| ✓ PFI 0                          |                | Output impedance<br>Output coupling<br>Output voltage levels                                 | 50 Ω, nominal<br>DC                          |                                                                                                                                |                   |
| ✓ SMB Cable                      |                | Output high                                                                                  |                                              | ical for 50 $\Omega$ load to gr<br>vical for 1 M $\Omega$ load<br>cal for 50 $\Omega$ load to gro<br>cal for 1 M $\Omega$ load | ound              |
| ✓ 0V "typical low" / 3,3V "typic | al high"       | Absolute maximum applied voltage <sup>1</sup><br>Output-to-output skew, asynchronous         | 0 to 4.4 V                                   |                                                                                                                                |                   |
| ✓ 1 Hz PPS for GNSS              |                | Output-to-output skew,<br>other asynchronous routes<br>Output-to-output skew, synchronous ro |                                              |                                                                                                                                |                   |
|                                  |                | Synchronized trigger clock<br>to out time, t <sub>co</sub>                                   |                                              | to CLKOUT when<br>PXI_CLK10)                                                                                                   |                   |
|                                  |                | Output current<br>Square wave rise/fall time<br>(10 to 90%) for 50 Ω load                    | ±48 mA, max                                  |                                                                                                                                |                   |



#### EGSE SW Elements: MMI Host SW + RT SW





www.aerospace.sener

#### EGSE SW Elements: MMI Host SW + RT SW

1. Main Front Panel

2. Plots

#### 3. Test Sequence

#### 4. TM Datapool





www.aerospace.sene

#### EGSE SW Elements: MMI Host SW + RT SW



### EGSE

#### SW Elements: MMI Host SW + RT SW

- Built In Test
- Model Initialization
- Global Datapool
- Scheduler
- Error Injection
- Log / Archive
- MMI I/F
- Model replacement





## **CoRA SAGE** Star Tracker Unit









## Star Tracker Unit



#### Star Tracker Unit AOCS/GNC Units - AURIGA STR

- STR x1 (Engineering Model)
- Redundancy by Mathematical Model
- AURIGA Simulink model provided by Sodern.
- Performances of the attitude tracking mode of the STR.





**Z**<sub>STRF</sub>

www.aerospace.sene



#### Star Tracker Unit AURIGA STR SW



Along with the OH, a SW library supports this operations.

www.aerospace.sene

## CoRA SAGE Validation





#### Validation EGSE functionalities, performance and IF

- Functionalities:
  - MMI test conduction
  - Logging and reporting
- Performances: real time close loop & open loop
- Interfaces:
  - Spacewire
  - RS422
  - Analogue & Digital Acquisition + FPGA tachometer
  - Star tracker interfaces
- Star tracker in the loop



- In BB side:
  - Dedicated driver per IF to communicate with EGSE, frequency register



#### Validation Integration and Test Flow

#### AOCS/GNC in FES

•Set of AOCS/GNC SW simulation case in Matlab/Simulink

#### AOCS/GNC in TASTE

AOCS/Modes and algorithms autocoded in the target platform
Subset of AOCS/GNC tests

#### CoRA-SAGE EGSE

verify the HIL closed loop features with the RDHC BB
Subset of AOCS/GNC tests

#### System test at CoRA level

• final verification phase will take place at the ESTEC Avionics Lab with the Elegant BB



52

Autocoding

Direct usage





#### Validation Test Flow

- Only a selection of Tests is flown down to the next review/facility
  - Blue is GNC
  - Red is EGSE





www.aerospace.sener

# CoRA SAGE



#### Testing Status

- All SAGE products have been successfully validated in an isolated way while the RDHC and MBAD products were still under development
- Close loop testing on progress and to be completed in the coming weeks before the final integration in the ESTEC Avionics Lab





#### Testing SAGE AOCS/GNC Tests



- SFM-01: Sun Pointing (MC)
- SFM-02 Eclipse Transition (ST)
- FPM-01: Fine Pointing (MC)
- FPM-02: Mode Transition (ST)
- REM-01: Nominal Re-entry
- REM-02-1: FADS Aero-Angles fault
- REM-02-2: FADS Mach number fault
- REM-02-3: FADS complete sensor failure
- TASTE Deployment
- TASTE Deployment on GR740



#### Testing SAGE EGSE Tests

- Functional: SW reuse.
  - EGSE-FUNC-01: Test conduction
  - EGSE-FUNC-02: Autonomous logging and reporting
- Performance: Closing the loop is needed
  - EGSE-PERF-01: Real Time performance test. Open Loop

57

- Interfaces: with EGSE in standalone.
  - EGSE-AIF-01 Analog IF test
  - EGSE-SWIF-01 SpaceWire IF test in FPM
  - EGSE-SWIF-02 SpaceWire IF test in SFM
  - EGSE-RSIF-01 RS-422 IF REM test
  - EGSE-RSIF-02 RS-422 IF OSM test
  - EGSE-RWTACHOIF-01: RW and TACHO IF test
  - EGSE-STRIF-01 STR IF test



#### Testing Some examples

SFM-02 - Eclipse Transition (ST)



www.aerospace.sene

Aeroespacial

#### Testing Some examples

#### EGSE-FUNC-01-MMI: Test conduction functionality

| Commands Panel<br>Available Commands |         |
|--------------------------------------|---------|
| SET_LOOP_UNIT                        | ~       |
| Selected CMD Parameters              |         |
| SET_LOOP_UNIT<br>Execution Time      |         |
| NOW                                  |         |
| NOW                                  | +1S     |
| +1M                                  | +1H     |
| DA                                   | те      |
| Unit                                 |         |
| RCS OSM                              | ~       |
| Mode                                 |         |
| Open Loop                            | ~       |
| Path Open Loop                       |         |
| c: \OPENLOOP \RCSOSM \rcsosm_open    | oop.txt |
| SE                                   | ND      |
|                                      |         |

#### Command History

| SET_SIM : NOW;3;0;                                           |
|--------------------------------------------------------------|
| SET_STIM : NOW;0;1;                                          |
| DISABLE_UNIT : NOW;3;1;                                      |
| SET_HK_FREQ : NOW; 1;                                        |
| SET_HK_FREQ : NOW;0;                                         |
| SETCONFIGURATION : NOW;c:\config;                            |
| SET_LOOP_UNIT : NOW;0;1;c:\OPENLOOP\RCSOSM\rcsosm_openloop.t |
|                                                              |

PENDING REJECTED ACCEPTED





#### Testing Some examples

#### EGSE-AIF-01: Analog IF test



Sent by EGSE

Received by COTS BB



## CoRA SAGE Conclusions and Next steps



## **Conclusions and Next steps**

✓ TRB successfully completed on April 2019:

- ✓ EGSE is validated
- ✓ AOCS/GNC modes validated in TASTE
- $\checkmark\,$  Star Tracker in the loop validated

□ Next steps:

- □ Preintegration at SENER on going
- □ Final Integration of SAGE in ESTEC Avionics Lab





Antonio Figueroa Santiago Lozano Terol Guillermo del Valle Reboul Guillermo Rodríguez Fernández Javier Corchero Téllez Lorenzo Tarabini Castellani Enrique Rodríguez Juan Manuel del Cura Velayos jm.delcura@aeroespacial.sener

## THANK YOU

www.aerospace.sener

in www.linkedin.com/company/sener

www.youtube.com/user/senerengineering