
COPYRIGHT KRONO-SAFE 2019 - PRESENTATION TO ESA– December 3,2019

ASTERIOS for Space Systems

Erwan Coz (KRONO-SAFE)

December 3, 2019

 Schedule: 6 months (actual 1 year)

 Purpose:

o Demonstrate feasibility of safety critical applications with ASTERIOS
development approach

o Evaluate the impact of the ASTERIOS development process of safety critical
applications for space systems

 Prime contractor:

o KRONO-SAFE

 Work performed:

o Analysis and selection of the software application to be ported on ASTERIOS

o Porting of the selected software application on ASTERIOS

o Demonstration and evaluation of the performance of the ported software
application

o Evaluation of the impact of the ASTERIOS development process on the space
standard ECSS-E-ST-40C

o Evaluation of the effort of qualifying ASTERIOS with respect to ECSS standard

Project Overview

COPYRIGHT KRONO-SAFE 2019 – PRESENTATION TO ESA December 3, 2019

2

 Two instants bound a processing (an Elementary Action)

o the execution early start date

o the deadline

 Behaviors are synchronized from those instants (Temporal Synchronization Points)

o Task activation only set by the current date

o No lock/semaphore/mutex nightmare for synchronization: no deadlocks

 Instants source can be:

o A timer source, i.e. an hardware timer

o An external events source, i.e. Ethernet frame reception, wheel tooth,
engine’s crankshaft

Time-Triggered Paradigm

COPYRIGHT KRONO-SAFE 2019 – PRESENTATION TO ESA December 3, 2019

f1 (Elementary Action)

Pre-processing Post-processing

Earliest
Start Date

(Release Date)

DeadlineCPU Budget
(real execution time
- target dependant)

Temporal
Synchronization
Points (TSP)

Logical Execution Time

tbeg tend

3

 Formal & flexible design (PsyC)
o Timing, partition and dataflow description (periodic and aperiodic)

ASTERIOS main principles
4

C functionsPsy instructions

COPYRIGHT KRONO-SAFE 2019 – PRESENTATION TO ESA December 3, 2019

 Automated integration

o Runtime tables off-line computation

• Based on PsyC program and timing budgets, ASTERIOS tool chain is able to generate:

– the optimal scheduling for each core (RSF = Repetitive Sequence of Frame)

– the memory partitioning configuration for the tasks and the kernel

– the optimal configuration of the communication buffers

• During the execution on the hardware target, the RTK:

– enforces both spatial and temporal isolation between tasks according to the runtime tables

– implements the hardware initialization, the error management and health monitoring
features

ASTERIOS main principles
5

CPU margin

RSF

PSY files Graph Equations

COPYRIGHT KRONO-SAFE 2019 – PRESENTATION TO ESA December 3, 2019

 Immediate communication mechanism
o Asynchronism effect

• Non-deterministic behavior: results of cases A and B depend on the scheduling, so
they may depend on small variation of any execution duration

Issue for determinism

Writer:
static int c = 0;

output = c++;

Reader:
int x = input;

// use x

0w

r 0

1 2 3 4 5 6 7 8 9 10 11

4 8

0w

r 1

1 2 3 4 5 6 7 8 9 10 11

5 9

Case A

Case B

Other:

6

This problem already exists with single-core and is worst with multi-core

COPYRIGHT KRONO-SAFE 2019 – PRESENTATION TO ESA December 3, 2019

 Synchronized communication mechanism (LET)
o No asynchronism effect

• Deterministic behavior: results of cases A and B don’t depend on the scheduling
thanks to a time stamping of dataflow

Solution for determinism

0w

r i

1 2 3 4 5 6 7 8 9 10 11

3 7

0w

r i

1 2 3 4 5 6 7 8 9 10 11

3 7

Case A

Case B

Writer:
static int c = 0;

output = c++;

Reader:
int x = input;

// use x

Other:

7

This solution is operational with single-core and multi-core as well

COPYRIGHT KRONO-SAFE 2019 – PRESENTATION TO ESA December 3, 2019

ASTERIOS Tool Suite Flow

COPYRIGHT KRONO-SAFE 2019 – PRESENTATION TO ESA December 3, 2019

8

 Define criteria to select application Software to port

 Apply criteria to Eagle Eye and Global Navigation Satellite Systems Software-
Defined Receiver (GNSS-SDR) applications => Eagle Eye application selection

 Design a dynamic architecture of the Eagle Eye application for ASTERIOS taking as
basis the Eagle Eye application running on ARM on top of XtratuM hypervisor
which partitions are executing RTEMS RTOS tasks or bare metal software

 Validate this dynamic architecture and perform SW/SW integration with the help
of ASTERIOS simulator on a PC

 Perform SW/HW integration of this dynamic architecture to run on top of
ASTERIOS RTK (Real Time Kernel) for ARM based board (Apalis board with i.MX6
quad cortex A9 SOC)

 Validate ported Eagle Eye application on top of ASTERIOS and Apalis ARM based
board with IO data transferred through UDP over Ethernet to the test environment

 Analyze the impact of the ASTERIOS development process on the space standard
ECSS-E-ST-40C

Work Logic

COPYRIGHT KRONO-SAFE 2019 – PRESENTATION TO ESA December 3, 2019

9

 Eagle Eye and Global Navigation Satellite Systems Software-Defined
Receiver (GNSS-SDR) applications are candidate to a port on top of
ASTERIOS

 Criteria used for selection:

o Programming language : ASTERIOS toolchain is supporting C and assembly
language in its current version. Using another language (e.g ADA) is possible
but requires significant work effort.

o Dependency with external libraries: ASTERIOS RTK is not providing built-in
libraries, any needed libraries will be integrated inside the application

o Current execution environment (HW/SW): should be close to targeted
environment

o Hard real time requirements: ASTERIOS technology well suited for hard real
time applications

o Space and time partitioning requirements: Native support in ASTERIOS

o Test environment reuse: Minimal effort to reuse an existing test environment
with the targeted HW/SW (standalone board with Ethernet and serial
connections)

Application to port selection

COPYRIGHT KRONO-SAFE 2019 – PRESENTATION TO ESA December 3, 2019

10

 Decision Matrix => Eagle Eye application selected

Application to port selection

COPYRIGHT KRONO-SAFE 2019 – PRESENTATION TO ESA December 3, 2019

Criteria Eagle Eye GNSS-SDR

Programming Language

compatibility with ASTERIOS
C fully compatible C++ not compatible

Dependency with external

libraries
None

Dependency with a number

GNU/Linux libraries and packages

Current execution environment

(software, hardware)

XtratuM ARINC 653 hypervisor and

RTEMS RTOS
Linux OS, Windows, Mac OS

Need for real-time Yes, control/command application
Yes, need to process signal in real

time

Need for space and time

partitioning

Yes, application is implementing 5

partitions running on different time

slots

No

Test environment reuse

High: Possibility to reuse in

standalone mode via UDP

communication the existing test

environment in order to exercise

application Input/Outputs (Space

link TM/TC) and to emulate

sensors/actuators (MIL1553 bus)

Low reuse

11

 Eagle Eye version 7 Central Software (Xtratum HV + RTEMS RTOS) running
on TEMU emulator platform

 Starting point architecture

Eagle Eye port starting point

COPYRIGHT KRONO-SAFE 2019 – PRESENTATION TO ESA December 3, 2019

12

 Eagle Eye version 7 Central Software integrated in ASTERIOS application
(agents, workers) running on ARM based board

 Targeted architecture

Eagle Eye port on ASTERIOS

COPYRIGHT KRONO-SAFE 2019 – PRESENTATION TO ESA December 3, 2019

13

 Preserve spatial functions partitioning (DMS, Payload, IO, AOCS)

 Remove FDIR partition managing health monitoring and error
management since this can be handled by ASTERIOS native error
management framework which is able to detect and manage errors (HW
exceptions and time execution monitoring)

 Preserve Xtratum IPC mechanism: ARINC 653 queueing and sampling ports
are replaced by ASTERIOS communication mechanisms (temporal
variables and streams)

 Define partitions functions blocks and their inputs/outputs

 Preserve temporal scheduling of the partitions:
o Major frame = 250 ms

o IO, DMS, AOCS, Payload execution time slots preserved

o Build functional temporal constraints based on RTEMs task frequencies

 Build ASTERIOS dynamic architecture based on the above assumptions

=> functions allocations into execution units (agent, worker)

=> communications means between execution units

=> describe timing constraints with PSY C language

Eagle Eye port strategy

COPYRIGHT KRONO-SAFE 2019 – PRESENTATION TO ESA December 3, 2019

14

 First step : function units layout build
o Function units identification (from initial application tasks/processes)

o Identification of data flow between function units

o Input and output data structures of each function unit definition/identification

o Relationship between inputs and outputs of all functional units

 Second step: functions allocation to execution units
o Allocate functions into ASTERIOS execution units (agents for functional code, workers for

driver code)

o Define ASTERIOS communication means based on functions units data flow defined on
step 1 for input/output data exchanges between execution units

o Use local variables for communications of functions which are allocated inside the same
execution unit

Eagle Eye dynamic architecture

COPYRIGHT KRONO-SAFE 2019 – PRESENTATION TO ESA December 3, 2019

15

Eagle Eye dynamic architecture

COPYRIGHT KRONO-SAFE 2019 – PRESENTATION TO ESA December 3, 2019

Functional Unit
Application

Process(es)
Input(s) Output(s)

AOCS partition

AOCS software
AOCS (AOCS

partition)

AOCS commands,

AOCS software new inputs

AOCS software outputs,

AOCS software current inputs

Payload partition

Payload-specific TC routing - Payload TC

Decoded Payload TC,

PUS1 TM,

Event

PUS8 TC execution (specific to Payload) Payload PUS8 TC

Payload commands,

PUS1 TM,

Event

IO partition

SpaceLink switching (SpaceLink) - SpaceLink control commands SpaceLink control responses

TC receiving (SpaceLink) - Ethernet packet TC

TM sending (SpaceLink) - TM Ethernet packet

Data receiving (MIL bus) - External IO (Ethernet)

Sensor readings,

Actuator readings,

Temperature readings,

Heater states,

Power load values,

Power states

Sensor commands sending (MIL bus) - Sensor commands External IO (Ethernet)

Actuator commands sending (MIL bus) - Actuator commands External IO (Ethernet)

Power command sending (MIL bus) - Power command External IO (Ethernet)

Payload command sending (MIL bus) - Payload command External IO (Ethernet)

16

 Third step : define function and execution units timing constraints
o Respect below partition cadencing

o Define temporal constraints of different functions based on RTEMS task periods

• Global TC routing happens 2 times per cycle of 250 ms

• TC execution (except for Payload-related) happen every time a TC is received, 2 times per cycle

• Housekeeping data reporting, parameter monitoring, is done every 20 cycles

• Event reporting happens 5 times per cycle

• Spacecraft attitude and orbit control is done every 5 cycles

• Spacecraft thermal control is done every 200 cycles

• Payload TC routing, as well as Payload TC execution, happen every 11 cycles

• All Space Link related functional units can be executed 5 times per cycle

• All MIL bus-related functional units can be executed once a cycle

Eagle Eye dynamic architecture

COPYRIGHT KRONO-SAFE 2019 – PRESENTATION TO ESA December 3, 2019

17

Eagle Eye dynamic architecture

COPYRIGHT KRONO-SAFE 2019 – PRESENTATION TO ESA December 3, 2019

18

Eagle Eye dynamic architecture

COPYRIGHT KRONO-SAFE 2019 – PRESENTATION TO ESA December 3, 2019

19

Eagle Eye dynamic architecture

COPYRIGHT KRONO-SAFE 2019 – PRESENTATION TO ESA December 3, 2019

 DMS cadence view

20

Eagle Eye dynamic architecture

COPYRIGHT KRONO-SAFE 2019 – PRESENTATION TO ESA December 3, 2019

21

Eagle Eye dynamic architecture

COPYRIGHT KRONO-SAFE 2019 – PRESENTATION TO ESA December 3, 2019

22

SW/SW integration

COPYRIGHT KRONO-SAFE 2019 – PRESENTATION TO ESA December 3, 2019

 Dynamic architecture formally expressed with PSY language :
o Execution units (agents, workers)

o Sub execution unit (body, jobs)

o Cadence (clocks, cycles, jitter, advance)

o Communications mechanisms (temporal variables, streams)

 Code integration
o C Source code of Eagle Eye v7 for ARM taken as basis

o Remove all code related to Xtratum (APIs related to partitions, IPC)

o Remove all code related to RTEMS (tasks, mutex) even the one inside libraries (libpus,
gnc)

o Rewrite PUS services media management to be integrated directly in agents

o Add standard libraries (needed part of C library, mathematical library) from used GCC
compiler

o Remove FDIR partitions and replace it with ASTERIOS error management framework

 Test with ASTERIOS simulator
o Use MingGW GCC version 8.1.0 for Windows as C compiler and C linker

o Build and execute Eagle Eye application for simulator

o Verify temporal behavior and data flow with the help of generated timing diagram

23

SW/HW integration

COPYRIGHT KRONO-SAFE 2019 – PRESENTATION TO ESA December 3, 2019

 Psy design not impacted

 Configure application build for HW
o Setup for RTK Apalis board embedding ARM cortex A9 quad core i.MX6 SOC from NXP

o Use arm-none-eabi-none GCC version 4.9.3 for Windows as C cross-compiler and C
linker

o Use standard libraries (needed part of C library, mathematical library) from used GCC
cross-compiler toolchain

 C files depending on HW (drivers) changed at compilation time : add
specific Ethernet driver to exchange IO data with external test applications

 Peripheral access right configuration (Ethernet controller access for IO
worker)

 Agent/worker to core allocation based on budget execution time
requirements

 Budget configuration refining based on profiling execution and
comparison with requirements

 Validate application sizing (scheduling and memory protection)

24

Test environment

COPYRIGHT KRONO-SAFE 2019 – PRESENTATION TO ESA December 3, 2019

 Leverage existing SVF environment for Eagle Eye for Space link TM/TC and
MIL1553 sensor/actuator test applications

25

Qualification

• Aeronautic Domain
– Target DO178C-DALA

• ASTERIOS RTK: DO-178C
– Target : DAL A

• ASTERIOS Developer Tool chain

– Strategy: Tool Chain outputs checked
by an independent tool chain

– Target : QA

• ASTERIOS Checker
– Target : DO330 TQL5

• Reuse this approach for ECSS-E-
ST-40C qualification process
(criticality level A)

User
Application

Source Code
(.c,.psy,.khic

)

Target
Configuratio
n Files (.tak)

Timing
Budget files

(.bgt)

Asterios
Developer

(Psyko)

Asterios Checker
(astech)

Asterios
RTK

.elf/.bin .c .o

C Compiler and Linker

Ok/
NOk

COPYRIGHT KRONO-SAFE 2019 – PRESENTATION TO ESA December 3, 2019

26

Qualification

COPYRIGHT KRONO-SAFE 2019 – PRESENTATION TO ESA December 3, 2019

 Main benefits of ASTERIOS usage for for ECSS-E-ST-40C qualification
process
o Formal description of the dynamic architecture (Psy language to express timing and

partitioning requirements) of the space application

o Automatic generation of runtime tables (scheduling and memory configuration) based
on the dynamic architecture requirements and the unitary functions maximum
execution times

o Independent checker tool to validate automatically that the generation process of the
runtime tables is correct (replacement of manual review/verification activities)

o Generation of a deterministic by construction application due to time triggered concepts
and data flow consistency

o Reuse of artifacts/documents produced for DO-178B certification of ASTERIOS kernel for
the application of ECSS-E-ST-40C development process for ASTERIOS kernel (considered
as a COTS)

27

Lessons learned

COPYRIGHT KRONO-SAFE 2019 – PRESENTATION TO ESA December 3, 2019

 Dynamic architecture design built by reverse engineering of the Eagle Eye
for ARM application current implementation (Xtratum partitions + RTEMS
tasks)
 Using timing, partitions and data flow requirements (end to end functional constraints,

system response time, IO physical capability..) as inputs to build the dynamic
architecture is a better practice for a full benefit of ASTERIOS technology usage

 Learning curve and support needed to adapt test environment for the
HW/SW setup of Eagle Eye application running with ASTERIOS on ARM
target
o Needs adaptations of SVF environment in order to exchange TM/TC data using UDP over

UDP

o Needs adaptations of SVF environment in order to emulate sensors/actuators data due
to the lack of 1553 hardware on chosen ARM board.

28

Conclusion

COPYRIGHT KRONO-SAFE 2019 – PRESENTATION TO ESA December 3, 2019

 Successful port of a representative control/command application (Eagle
Eye) for a space system using ASTERIOS technology to run on a ARM
reference board

 ASTERIOS technology allows to guarantee the determinism by
construction of an application on single core or multicore ARM platforms
o Logical Execution Time (Time Triggered applications)

o Data flow consistency and determinism

o A formal language to express parallelism, sequencing and synchronizations

o Automatic generation of optimal scheduling and memory configuration from
specifications

o A performant real-time kernel (lock free/wait free, small footprint, constant time
execution, native multicore)

 ASTERIOS technology have positive impact when developing applications
according to space standards ECSS-E-ST-40C qualification
o Qualification strategy with an automatic checker of the main toolchain

o Reuse artifacts from DO-178C Level A/DO330 certification/qualification

29

Thank your for your attention…

Erwan Coz – Senior FAE

Erwan.coz@krono-safe.com

www.krono-safe.com

30

…any questions ?

mailto:Erwan.coz@krono-safe.com
http://www.krono-safe.com/

