
BSSE System and Software Engineering

© Dr. Rainer Gerlich BSSE System and Software Engineering, 2019 Automatic Source-code-based Testing, Improvement, Final Presentation, ESA Contract No. 4000116014, Noordwijk, 04.12.2019 1

FAST II

Automatic Source-code-based Testing, Improvement

Final Presentation

Noordwijk, December 4th, 2019

ESA Contract No. 4000116014 (GSTP)

BSSE Team: Rainer Gerlich, Ralf Gerlich

SCISYS Team: Allan Pascoe, Glenn Johnson

ESA TO: Maria Hernek

Dr. Rainer Gerlich Tel. +49/7545/91.12.58
Auf dem Ruhbuehl 181 Fax +49/7545/91.12.40
88090 Immenstaad Mobile +49/171/80.20.659
Germany email Rainer.Gerlich@bsse.biz

BSSE System and Software Engineering

© Dr. Rainer Gerlich BSSE System and Software Engineering, 2019 Automatic Source-code-based Testing, Improvement, Final Presentation, ESA Contract No. 4000116014, Noordwijk, 04.12.2019 2

Contents

 The FAST Approach

 DCRTT Open Tool Interface

 VectorCAST Interface

 Cantata Interface

 Requirements-Based Testing

 Benchmarking

 Conclusions and Outlook

BSSE System and Software Engineering

© Dr. Rainer Gerlich BSSE System and Software Engineering, 2019 Automatic Source-code-based Testing, Improvement, Final Presentation, ESA Contract No. 4000116014, Noordwijk, 04.12.2019 3

The FAST Approach

BSSE System and Software Engineering

© Dr. Rainer Gerlich BSSE System and Software Engineering, 2019 Automatic Source-code-based Testing, Improvement, Final Presentation, ESA Contract No. 4000116014, Noordwijk, 04.12.2019 4

About FAST and DCRTT

 FAST
 Flow-Optimised Automated Source-code-based Testing

 automate the test process from test data generation to report generation

 DCRTT
 Dynamic C Random Test Tool

 following DARTT, Dynamic Ada Random Test Tool

 tool supporting the FAST approach

BSSE System and Software Engineering

© Dr. Rainer Gerlich BSSE System and Software Engineering, 2019 Automatic Source-code-based Testing, Improvement, Final Presentation, ESA Contract No. 4000116014, Noordwijk, 04.12.2019 5

Goals of the Project

DCRTT

RQBT
Requirements-
Based Testing

Improvements
reduction of false positives
extended detection of faults
more coverage

OpenTool
Interface

massive
stimulation


test inputs

Cantata

VectorCast

Benchmarking
with 4 static analysers

compare
+

evaluate

provide test data

implement

close the gap between
test vectors and requirements

BSSE System and Software Engineering

© Dr. Rainer Gerlich BSSE System and Software Engineering, 2019 Automatic Source-code-based Testing, Improvement, Final Presentation, ESA Contract No. 4000116014, Noordwijk, 04.12.2019 6

Interfaces of the
FAST Test Process in DCRTT
at the end of FASTII

Requirements, Oracles
Source Code

Coverage Anomaly
Reports

Exec.
Time

Data Range
Monitoring

FAST Process
DCRTT

Prototypes

Types B
la

c
k

-B
o

x

Other
Metrics

Comparison
Exp. – Obs.

Test Report

Open Interface
Test Management

Tools

Cantata
VectorCAST W

h
it

e
-B

o
x

Constants

Data Usage
static / dyn.

Constraint-
Based Test

Data
Generation

C
o

n
tr

a
c

ts

Constraints

Stimulation
Fault Injection

Genetic
Algorithms

G
ra

y-
B

o
x

RQBT
Feedback

DCRTT Dynamic C Random Test Tool

integration only

integration only

Test
Driver

Test Case Export

BSSE System and Software Engineering

© Dr. Rainer Gerlich BSSE System and Software Engineering, 2019 Automatic Source-code-based Testing, Improvement, Final Presentation, ESA Contract No. 4000116014, Noordwijk, 04.12.2019 7

Open Tool Interface

BSSE System and Software Engineering

© Dr. Rainer Gerlich BSSE System and Software Engineering, 2019 Automatic Source-code-based Testing, Improvement, Final Presentation, ESA Contract No. 4000116014, Noordwijk, 04.12.2019 8

Open Tool Interface
Principal Approach

BSSE System and Software Engineering

© Dr. Rainer Gerlich BSSE System and Software Engineering, 2019 Automatic Source-code-based Testing, Improvement, Final Presentation, ESA Contract No. 4000116014, Noordwijk, 04.12.2019 9

Output VectorCAST
Coverage Report

BSSE System and Software Engineering

© Dr. Rainer Gerlich BSSE System and Software Engineering, 2019 Automatic Source-code-based Testing, Improvement, Final Presentation, ESA Contract No. 4000116014, Noordwijk, 04.12.2019 10

Example VectorCast
Test Script (2)
unconstrained array

-- Test Case Script
-- Environment :
vc_test_hello_vcast_1_BSSE_main_7
-- Function Under Test: hello_vcast_1 -
BSSE_main 7 of hello_vcast_1.c
-- Script Features
TEST.SCRIPT_FEATURE:C_DIRECT_ARRAY_INDEXING
TEST.SCRIPT_FEATURE:CPP_CLASS_OBJECT_REVISION
TEST.SCRIPT_FEATURE:MULTIPLE_UUT_SUPPORT
TEST.SCRIPT_FEATURE:STANDARD_SPACING_R2
TEST.SCRIPT_FEATURE:OVERLOADED_CONST_SUPPORT
-- End of header hello_vcast_1 - BSSE_main 7 of
hello_vcast_1.c
-- vc_test_7.tst generated by
dcrtt_open_if_cnv_vc.c for tool vc on <date>
-- Test File: hello_vcast_1.c
TEST.UNIT:hello_vcast_1
TEST.SUBPROGRAM:BSSE_main
-- mangled name BSSE_main
-- List of relevant data of function BSSE_main
-- #tot para= 2
-- #func para= 2
-- #glob para= 0
-- #constr para= 0
-- Parameters
-- signed int argc
-- char * argv[UC_LIT2]
-- Return
-- signed int _return_
TEST.NEW
TEST.NAME:(CL)BSSE_main.001
-- derived from DCRTT test case 1
TEST.NOTES:
No requirements provided
TEST.END_NOTES:

TEST.FLOATING_POINT_TOLERANCE: 9.99999974737875163555e-06
TEST.VALUE:hello_vcast_1.BSSE_main.argv[0]:<<malloc 26>>
TEST.VALUE:hello_vcast_1.BSSE_main.argv[1]:<<malloc 26>>
TEST.VALUE:hello_vcast_1.BSSE_main.argv[2]:<<malloc 26>>
TEST.VALUE:hello_vcast_1.BSSE_main.argv[3]:<<malloc 26>>
TEST.VALUE:hello_vcast_1.BSSE_main.argv[4]:<<malloc 26>>
TEST.VALUE:hello_vcast_1.BSSE_main.argc: -2147483648
TEST.VALUE:hello_vcast_1.BSSE_main.argv[0]: ""
TEST.VALUE:hello_vcast_1.BSSE_main.argv[1]: "lxivmf{lurnmkdzwlqrr
rjqg"
TEST.VALUE:hello_vcast_1.BSSE_main.argv[2]: "g
uxxclxgjnorgwhuqouzjmgi"
TEST.VALUE:hello_vcast_1.BSSE_main.argv[3]: "LQWT7WNaMA0K0HKJTMR
D1423"
TEST.VALUE:hello_vcast_1.BSSE_main.argv[4]: "1@i5}A6}7\\'%kB^I$2r
2)7m3"
TEST.VALUE:hello_vcast_1.BSSE_main.return: -2147483648
TEST.EXPECTED_USER_CODE:hello_vcast_1.BSSE_main.argc
{{ (signed long)<<hello_vcast_1.BSSE_main.argc>> == ((signed
long)-2147483648) }}
TEST.END_EXPECTED_USER_CODE:
TEST.EXPECTED_USER_CODE:hello_vcast_1.BSSE_main.argv
{{ strcmp(<<hello_vcast_1.BSSE_main.argv>>[0] , "1234567890") }}
{{ strcmp(<<hello_vcast_1.BSSE_main.argv>>[1] , "1234567890") }}
{{ strcmp(<<hello_vcast_1.BSSE_main.argv>>[2] , "1234567890") }}
{{ strcmp(<<hello_vcast_1.BSSE_main.argv>>[3] , "1234567890") }}
{{ strcmp(<<hello_vcast_1.BSSE_main.argv>>[4] , "1234567890") }}
TEST.END_EXPECTED_USER_CODE:
TEST.EXPECTED_USER_CODE:hello_vcast_1.BSSE_main.return
{{ (signed long)<<hello_vcast_1.BSSE_main.return>> == ((signed
long)0) }}
TEST.END_EXPECTED_USER_CODE:
TEST.END

BSSE System and Software Engineering

© Dr. Rainer Gerlich BSSE System and Software Engineering, 2019 Automatic Source-code-based Testing, Improvement, Final Presentation, ESA Contract No. 4000116014, Noordwijk, 04.12.2019 11

Output Cantata for
Test Script /
Decision Coverage

BSSE System and Software Engineering

© Dr. Rainer Gerlich BSSE System and Software Engineering, 2019 Automatic Source-code-based Testing, Improvement, Final Presentation, ESA Contract No. 4000116014, Noordwijk, 04.12.2019 12

Requirements-Based Testing (RQBT)

BSSE System and Software Engineering

© Dr. Rainer Gerlich BSSE System and Software Engineering, 2019 Automatic Source-code-based Testing, Improvement, Final Presentation, ESA Contract No. 4000116014, Noordwijk, 04.12.2019 13

Requirements and Coverage

Oracle

Functions

Requirements

Test Cases +

Counter Examples

Function Call

Derivation of oracles (intent: automatic)

Correlation of oracles with functions (intent: automatic)

Automatic execution of oracles in test environment

Test Driver Generation

Failed / passed
Results

Bottom-up Propagation of Results

BSSE System and Software Engineering

© Dr. Rainer Gerlich BSSE System and Software Engineering, 2019 Automatic Source-code-based Testing, Improvement, Final Presentation, ESA Contract No. 4000116014, Noordwijk, 04.12.2019 14

Structure of an Oracle

O
ra

cl
e

Pre-Condition

Post-Condition

Function Call

IF true

Parameter
+

Global
Variables

Parameter
+

Globals
Variables

THEN apply

evaluate

fail / pass

check
Inputs

Outputs

BSSE System and Software Engineering

© Dr. Rainer Gerlich BSSE System and Software Engineering, 2019 Automatic Source-code-based Testing, Improvement, Final Presentation, ESA Contract No. 4000116014, Noordwijk, 04.12.2019 15

Oracle Examples

status==active && mode==mode1 ? moniFlag==true

status==active && mode==mode2 ? moniFlag==true

status==active && mode==mode3 ? moniFlag==false

Pre-condition:
if true check post-condition

Post-condition:
if true: pass
if false: fail

Three
Oracles

counter examples found

BSSE System and Software Engineering

© Dr. Rainer Gerlich BSSE System and Software Engineering, 2019 Automatic Source-code-based Testing, Improvement, Final Presentation, ESA Contract No. 4000116014, Noordwijk, 04.12.2019 16

Conclusion on
Requirements Analysis

 Readiness for Auto-Extraction of Information
 only some requirements found suitable for auto-generation of oracles

 formal models of requirements needed

 guidelines required

 Requirements Top-Down Tracking
 continuous tracking chain required

 all functions must track back to at least one requirement

 DCRTT Implementation
 infrastructure available supporting this notation

 support for bottom-up propagation available

 demonstrated bottom-up result propagation / requirements fulfilment

BSSE System and Software Engineering

© Dr. Rainer Gerlich BSSE System and Software Engineering, 2019 Automatic Source-code-based Testing, Improvement, Final Presentation, ESA Contract No. 4000116014, Noordwijk, 04.12.2019 17

Benchmarking

BSSE System and Software Engineering

© Dr. Rainer Gerlich BSSE System and Software Engineering, 2019 Automatic Source-code-based Testing, Improvement, Final Presentation, ESA Contract No. 4000116014, Noordwijk, 04.12.2019 18

Selected Tools

Analysis
Type

Analysis Approach Soundness

DCRTT dynamic
test, auto-stimulation and
auto-test data generation

not sound

Astree

static abstract interpretation

sound

CodeProver sound

BugFinder not sound

QA/C static
symbolic execution, dataflow
analysis

not sound

BSSE System and Software Engineering

© Dr. Rainer Gerlich BSSE System and Software Engineering, 2019 Automatic Source-code-based Testing, Improvement, Final Presentation, ESA Contract No. 4000116014, Noordwijk, 04.12.2019 19

 Two versions

 early version with potentially more defects

 late version with potentially less defects

 Intention of using two versions

 evaluate impact on reporting by number of reports

 no significant difference found

 Characteristics of Application

 ~190 KLOC

 60-70 tasks (periodic, synchronous, sporadic)

 ~120 functions missing  stubbed

The Application

BSSE System and Software Engineering

© Dr. Rainer Gerlich BSSE System and Software Engineering, 2019 Automatic Source-code-based Testing, Improvement, Final Presentation, ESA Contract No. 4000116014, Noordwijk, 04.12.2019 20

Analysis and Test Modes

Analysis Mode
Tool

DCRTT QAC Astree BugFinder CodeProver
EM 1 x x x x
EM 2 x x x x
EM 3 x x x
Unit testing x
functionwise x

Execution Mode Description
EM 1 deterministic / sequential execution of the task bodies
EM 2 non-deterministic / random execution of the task bodies
EM 3 modelling of concurrent execution of task bodies with pre-emption
Unit testing every function is subject to stimulation / testing
functionwise every function is independently analysed

EM = Execution (analysis) mode

BSSE System and Software Engineering

© Dr. Rainer Gerlich BSSE System and Software Engineering, 2019 Automatic Source-code-based Testing, Improvement, Final Presentation, ESA Contract No. 4000116014, Noordwijk, 04.12.2019 21

Remarks on
Benchmarking Evaluation Results

 Boundary Conditions

 Benchmarking was performed at the end of development

 Many reports issued by the tools (up to ~30.000)

 Unclear: Number of reports & effort in case of continuous integration

 Application Impact

 number and type of reports depend on application defect profile

 Configuration Impact

 number and type of reports strongly (tool-)configuration dependent

 Report Selection Impact

 evaluation results strongly depend on selection process

 number of reports issued may heavily differ between tools

BSSE System and Software Engineering

© Dr. Rainer Gerlich BSSE System and Software Engineering, 2019 Automatic Source-code-based Testing, Improvement, Final Presentation, ESA Contract No. 4000116014, Noordwijk, 04.12.2019 22

Variation of Report Figures
Both Versions

To be considered:

different reporting policies of tools

• reporting for every location?

• reporting for every path?

• duplication of reports?

BSSE System and Software Engineering

© Dr. Rainer Gerlich BSSE System and Software Engineering, 2019 Automatic Source-code-based Testing, Improvement, Final Presentation, ESA Contract No. 4000116014, Noordwijk, 04.12.2019 23

Report Classification

Code Status
Defect present Defect not present

Reported
Defect present True Positive / TP False Positive / FP
Defect not present False Negative / FN True Negative / TN

Classification
Category

Criterion Applied Evaluation Condition / Check

Validity
tool Is the tool message formally correct?
state Can an undesired state really be reached?

Context
with context

The execution conditions may be constrained by the
calling function (caller)

without context The execution conditions are not constrained

BSSE System and Software Engineering

© Dr. Rainer Gerlich BSSE System and Software Engineering, 2019 Automatic Source-code-based Testing, Improvement, Final Presentation, ESA Contract No. 4000116014, Noordwijk, 04.12.2019 24

Std. Defect Types vs. Tools

No contribution for late version

critical uncritical

warning to be ignored

Results depend on application, tool configuration and defect profile

BSSE System and Software Engineering

© Dr. Rainer Gerlich BSSE System and Software Engineering, 2019 Automatic Source-code-based Testing, Improvement, Final Presentation, ESA Contract No. 4000116014, Noordwijk, 04.12.2019 25

Variation of Report Figures
(Excerpt)

Late Version
Defect Type Tool1 Tool2 Tool3 DCRTT Tool5 Comment

Assert 363 6 343 227 0 compromised by stubbing
Concurrency
Issues

10755 807 2633 n/a n/a
non-relevant due to non-
representative scheduling

Unused Result 4909 732 0 n/a 0
Uninitialized
Variable

1140 26 1215 n/a 4

BSSE System and Software Engineering

© Dr. Rainer Gerlich BSSE System and Software Engineering, 2019 Automatic Source-code-based Testing, Improvement, Final Presentation, ESA Contract No. 4000116014, Noordwijk, 04.12.2019 26

Report Summary

Number of Reports

Tool
Early Version Late Version

entry-point-function unit
test

entry-point-function unit
testdeterm. non-det. multi-task. determ. non-det. multi-task.

DCRTT 31 31 n/a 1590 16 21 n/a 1638

Other
Tools

One tool supplier denied publishing of data,
therefore no figures are published with reference to a tool

range 800 – 29000 (entries in std. csv-file)
(entries extracted from tool-specific report files)

more
functions,
more
reports

BSSE System and Software Engineering

© Dr. Rainer Gerlich BSSE System and Software Engineering, 2019 Automatic Source-code-based Testing, Improvement, Final Presentation, ESA Contract No. 4000116014, Noordwijk, 04.12.2019 27

Evaluation Results for TP
Based on Entry-Point Function

Tool Version
Execution

Mode
#Reports

TP
FP

with ctxt
w/o
ctxt

with
ctxt

w/o
ctxt

tot data task stub

DCRTT
330

deterministic
31 4 31 27 20 3 4 0

non-deter.

450
deterministic 16

1
16 15 8

3 4 0
non-deter. 21 21 20 13

Vers. Function Location Id

Reported by Confirm.

DCRTT
Other
ToolsEntry-point-

version
Module
Testing

early
func1

X 1

determ. +
non-determ.

x

2x

X+2 2 1x

X+5 3 1x

func2 Y 4 2x

late
func3 Z 5

determ. +
non-determ.

none 1x

func4 U 6 none x 2x

4 + 1 from DCRTT entry-point execution
+ 1 from DCRTT unit testing

source of FP
non-representative
analysis environment

The two issues for the late version –
highlighted in the analysis – have no
impact on the current operational
concept and mission performance.

BSSE System and Software Engineering

© Dr. Rainer Gerlich BSSE System and Software Engineering, 2019 Automatic Source-code-based Testing, Improvement, Final Presentation, ESA Contract No. 4000116014, Noordwijk, 04.12.2019 28

Final Evaluation Results (late)

Report
Assessment

Tool
w/o ctxt

State
w/o ctxt

Tool
with ctxt

State
with ctxt

TP 48 46 11 9
assert 7 7 1 1

out-of-bounds 34 33 9 8
dereference 6 6 0 0
uninitialised 1 0 1 0

FP 8 10 45 47
Total 56 56 56 56

Relevance Assessment

Number of
TP Reports

In
450

Overlap
with
330

should be fixed one-off-index fault (1x), invalid index (1x) 2 0
not relevant hidden check 3 0
not relevant Assertion failure due to stub 1 1

not relevant
Supposing that telecommand contents is checked on-
ground or in another task, check not visible

3 3

Consolidated reports 56 < 57 manually evaluated reports

BSSE System and Software Engineering

© Dr. Rainer Gerlich BSSE System and Software Engineering, 2019 Automatic Source-code-based Testing, Improvement, Final Presentation, ESA Contract No. 4000116014, Noordwijk, 04.12.2019 29

Context Approximation
Example 1/2: interval approx.

typedef enum {
lit0=0,lit1=1,lit2=2,
litInvalid=255

} TySet;

TySet map2set(uint8_t para){
if (para==0) return lit0;
else if (para==1) return lit1;
else if (para==2) return lit2;
else return litInvalid;

}

int myArr[lit2+1];

void myFunc(TySet para) {
idx=map2set(para);

if (idx != litInvalid)
myArr[idx]=0;

return;
}

setEnum =0,1,2,255 exact

setReturn=0,1,2,255 exact
setApprox=[0,255] interval approx.

setApprox =[0,255]

setApprox2=[0,254], 255 removed
idx may be > 2: FP will be reported

BSSE System and Software Engineering

© Dr. Rainer Gerlich BSSE System and Software Engineering, 2019 Automatic Source-code-based Testing, Improvement, Final Presentation, ESA Contract No. 4000116014, Noordwijk, 04.12.2019 30

Context Approximation
Example 2/2: min/max

int myMapping[6]=
{1,3,5,54,7,78};

char mySrc [100];
char myDest[5];

void myFunc(int idx) {
if (idx>0 && idx<6) {

memcpy(dest,
src,
myMapping[idx]);

return;
}

int main(int argc, char* argv)
{

myFunc(2);
return 0;

}

array contents is approximated /
squashed
by min/max: [1,78]

min/max are considered here:[1,78]

myFunc is called with
idx=2  size=5 which is valid

but taking the maximum 78 the
following report is issued:
78 out-of-bounds [0,5]

BSSE System and Software Engineering

© Dr. Rainer Gerlich BSSE System and Software Engineering, 2019 Automatic Source-code-based Testing, Improvement, Final Presentation, ESA Contract No. 4000116014, Noordwijk, 04.12.2019 31

Sources of False Positives (1/2)

 Mismatch of Verification Criteria and Programming Style
 if verification criteria are not considered during development  high number of FP

 verification tool(s) should be considered continuously over the development cycle

 Non-representativity of the analysis environment
 just exposing the source code to the analysis may not be sufficient

 e.g. stubbing, scheduling scheme, dynamic changes of object structure (telecmd.)

 mockups may be required to represent environment

 Non-representativity of the analysis method
 context vs. robustness trade-off and approach of chosen tool

 provision of required context information by tool and user

BSSE System and Software Engineering

© Dr. Rainer Gerlich BSSE System and Software Engineering, 2019 Automatic Source-code-based Testing, Improvement, Final Presentation, ESA Contract No. 4000116014, Noordwijk, 04.12.2019 32

Sources of False Positives (2/2)

 Approximation of the context, static analysers, abstract interpretation
 exact representation of the context vs. memory consumption and runtime

 context information may be lost due to approximation

 benefits of using context information may be lost  increased number of FP

 Missing or non-visible checks
 checks not present to ensure valid conditions

 checks present but not visible for the verification tool, e.g. task boundaries or ground
checks

BSSE System and Software Engineering

© Dr. Rainer Gerlich BSSE System and Software Engineering, 2019 Automatic Source-code-based Testing, Improvement, Final Presentation, ESA Contract No. 4000116014, Noordwijk, 04.12.2019 33

Recommendations

 Ensure a representative context to the degree possible

 Choose the right tool approach for the envisaged verification goal

robustness testing vs. pure unit testing, context-sensitive or not

provide as much context-information as possible

 Consider the feedback from the verification tool(s) as early as possible
during coding

 Fix the defects according to the tool feedback

 Discuss a trade-off on protection against invalid data

check or do not check?

Checking will reduce the amount of false positives

BSSE System and Software Engineering

© Dr. Rainer Gerlich BSSE System and Software Engineering, 2019 Automatic Source-code-based Testing, Improvement, Final Presentation, ESA Contract No. 4000116014, Noordwijk, 04.12.2019 34

Conclusions and Outlook

BSSE System and Software Engineering

© Dr. Rainer Gerlich BSSE System and Software Engineering, 2019 Automatic Source-code-based Testing, Improvement, Final Presentation, ESA Contract No. 4000116014, Noordwijk, 04.12.2019 35

FAST / DCRTT Potential and
Test Strategies

FAST

DCRTT

Entry-point
function

integrated system +
telecommand injector +

instrumentation

true / false positives
depend on

representative env.:
scheduling, stubbing,

external data

RQBT

pass/fail oracles
depend on
quality of

requirements

Robustness
testing

every report is a
true positive

Unit testing

context required

true / false positives
depend on support for

context information

Open Tool Interface

Cantata, VectorCAST, 

