REDOUBT - Reliable FPGA Datapath Design Using Control Techniques

Oana Boncalo

University Politehnica Timisoara

oana.boncalo@cs.upt.ro

December 4, 2019

ESA ITI REDOUBT

Conclusions & Future work

Overview

2 Control based fault tolerance

- Working principle
- Correction Controller
- Reference

Overview	&	Objectives
----------	---	------------

Outline

Overview & Objectives

Control based fault tolerance
 Working principle
 Correction Controller

Reference

3 Use case

ESA ITI REDOUBT

Overview & Objectives	Control based fault tolerance	Conclusions & Future work
Overview		

- ESA Innovation Triangle Initiative Type A
- Duration : July 2018 June 2019
- Consortium : University Politehnica Timisoara (Lead), Technical University of Cluj-Napoca (subcontractor)
- Project team : Oana Boncalo, Alexandru Amaricai (UPT), Zsofia Lendek (UTCN)
- Objective : Develop novel fault tolerant techniques for digital datapath circuits by applying control feedback loops

Oana Boncalo

- Start End TRL: 0 2
- Budget: 48K

ESA ITI REDOUBT

Conclusions & Future work

Outline

1 Overview & Objectives

2 Control based fault tolerance

- Working principle
- Correction Controller
- Reference

3 Use case

ESA ITI REDOUBT

Target circuit

- Data-path units:
 - several processing stages built out of arithmetic operations: additions, multiply-add fused, multiplications
 - The partial output is stored to memory or inside registers and may consist of one or several data outputs;
- Each processing stage *i* consists of a sequence of registers
 {*R*ⁱ₀, *R*ⁱ₁, ..., *Rⁱ_{ni}*}, takes *n_i* clock cycles to compute one data
 output, and processes a total of *nⁱ_{el}* data values;

Overview		Objectives
----------	--	------------

Control based fault tolerance

Use case

Conclusions & Future work

The idea

- Control engineering basic working principle 3 building blocks:
 - the physical system modelled as a process
 - the reference
 - the controller that ensures that the process "follows" as closely as possible the reference

Idea: include a control feedback loop that does the spread of the second s

Overview & Objectives	Control based fault tolerance	Conclusions & Future work
The idea		

- Control engineering basic working principle 3 building blocks:
 - $\bullet\,$ the physical system modelled as a process $\rightarrow\,$ the digital circuit data-path
 - \bullet the reference \rightarrow ?
 - the controller that ensures that the process "follows" as closely as possible the reference \rightarrow ? needs to be designed somehow

Note: control engineering mitigates the perturbation, such that the process successfully follows the reference (*i.g. for the system* is stable).
 ESA ITI REDOUBT
 Oana Boncalo

Overview & Objectives	Control based fault tolerance	Conclusions & Future work
The idea		

- Note 1: control engineering does not target zero error! It reduces the error amplitude such that it is acceptable for the application, and it successfully follows the reference (*i.e.* the system is stable).
- Note 2: control engineering physical systems have large inertia. The controller adjusts its outputs in a window of time corresponding to several samples.
- Digital circuits are expected to deliver the correct, or the correct output for every set of inputs!
 Cana Boncalo

Overview & Objectives	Control based fault tolerance	Conclusions & Future work
The idea		

- Approach is suitable for applications that tolerate small magnitude errors at the output!
- Digital circuits are expected to deliver the correct, or almost correct output for every set of inputs!
- → extend computation such that the correction controller manages to decrease the error amplitude at the expected level!

ESA ITI REDOUBT

General considerations

- Data-path circuit: several processing stages with intermediate results stored in registers or memory
- Fault model: probabilistic faults
- Fault mitigation: some sort of control loop that attenuates the error at the output until it becomes acceptable for the application at hand, or is zeroed
- Acceptable penalty (throughput): computation may be extended for a number of clock cycles under certain conditions
- Acceptable penalty (cost): less than triple modular redundancy

ESA ITI REDOUBT

Conclusions & Future work

Outline

1 Overview & Objectives

Control based fault tolerance
 Working principle

- Correction Controller
- Reference

3 Use case

ESA ITI REDOUBT

Conclusions & Future work

Design Problems

- 1 FT Digital Circuit operation
- 2 The correction control feedback loop:
 - the model of the digital circuit non-linear
 - linearize the model of the digital circuit in order to be able to compute the linear correction controller
- 3 The reference

Overview & Objectives

Control based fault tolerance

Use case

Conclusions & Future work

Digital circuit operation

- Extend computation in case errors are detected activate correction controller loop
- Limit latency increase by:
 - pipeline stages execution rewind
 - parallel block execution
 - concept of correction execution phase largest latency
 maxm. cc. over all stages

 $maxn_i$ cc over all stages

ESA ITI REDOUBT

Oana Boncalo

・ ロ ト ・ 一戸 ト ・ 目 ト ・

э

14

Overview & Objectives

Control based fault tolerance

Use case

Conclusions & Future work

Digital circuit operation

- At each cc the correction controller adds some correction offsets to designated registers of the blocks rewinded such that the error magnitude is reduced.
- Limit cost increase by:
 - $\bullet \ \ \text{simple controller} \to \text{linear}$
 - short response time

ESA ITI REDOUBT

Conclusions & Future work

Outline

1 Overview & Objectives

Control based fault tolerance
 Working principle
 Correction Controller
 Reference

3 Use case

ESA ITI REDOUBT

Control based fault tolerance

Use case

Conclusions & Future work

Correction Controller Design Steps

Steps for correction controller model design and test:

- 1 Build Dynamic circuit Model (Matlab)
- 2 Design linear correction controller
- 3 Test stability of model in different linearization points
- 4 Implement in hardware

Conclusions & Future work

Correction Controller Design Steps: Dynamic Model

Requirements:

- Discrete time model: clock;
- General structure independent of the underlying processing stage;
- Fixed point representation;
- Registers may contain partial results (*e.g.* multiply accumulate), hence final results are available at well determined moments in time;

ESA ITI REDOUBT

Conclusions & Future work

Correction Controller Design Steps: Dynamic Model

Steps for obtaining the dynamic model of a circuit processing stage:

- describe RTL operations for computing an output data element
- Assign model state variables to:
 - partial register computations
 - output registers
- Rewrite as:
 - $x(k+1) = Q\kappa(x(k)) + Ax(k) + a,$
 - a -input vector, A additions, Q multiplications

€esa € • • • • • • • •

19

• build the overall circuit model

Overview & Objectives

Control based fault tolerance

Use case

Conclusions & Future work

Correction Controller Design Steps: Correction controller Gain matrix

ESA ITI REDOUBT

FT circuit model:

- Dynamic model with correction controller control: x(k + 1) = Qκ(x(k)) + Ax(k) + a + Bu^c(k)
- B selects the correction offset for each register
- u^c(k) = -K(x(k) x^d), K gain matrix, x(k) x^d difference between the reference and the circuit output
- gain matrix solve the linear matrix inequality conditions for the reduced size model
 This is a solution of the reduced size model

・ロット 4 日マット 4 日マット

20

Conclusions & Future work

Outline

1 Overview & Objectives

2 Control based fault tolerance

- Working principleCorrection Controller
- Reference

3 Use case

ESA ITI REDOUBT

The Reference problem

- The considered approach for designing a control feedback loop assumes the existence of a golden reference;
- Proposed approach: duplicate the FT design and connect the 2 instances in reaction:
 - Filter performs a processing of the data outputs to serve as reference to limit potential errors to propagate between instances;
 - Supervisor the control part deciding entering the error correction mode, and its termination;

Overview & Objectives	Control based fault tolerance	Use case	Conclusions & Future work
Outline			

- Overview & Objectives
- 2 Control based fault tolerance
- 3 Use case
- 4 Conclusions & Future work

ESA ITI REDOUBT

Overview & Objectives	Control based fault tolerance	Use case	Conclusions & Future work
Use case - 2 [OOF pipeline		

- Fuzzy controller for 2-DOF robot arm
- Based on measured angles and angular velocities 4 value process state vector x(k) -, we apply a set of 2 torques 2 value control vector u(k) in order to follow a reference 2 value vector y_r
- The 2 DOF employs the following computations:
 - Trigonometric function evaluation based on 2nd and 3rd order Taylor series
 - Computation of fuzzy scalars multiply-accumulate operations
 - Fuzzy scalars products
 - Gain matrix computation accumulation of scalar-matrix multiplications
 - Control vector computation matrix-vector multiplication
 - Difference computation

• Fixed point implementation - 24 bits (16 bits fractional part

ESA ITI REDOUBT

Oana Boncalo

24

Conclusions & Future work

2 DOF - Pipeline

- Trigonometric functions approximation
- Fuzzy scalar computation
- Fuzzy scalar multiplication
- Final gain matrix computation
- Control output computation
- Difference computation

Control based fault tolerance

Use case

Conclusions & Future work

INIVERSITATEA TENNIC

26

Matlab execution environment – verification & SFI

ESA ITI REDOUBT

2 DOF - Implementation cost

- Implementation results Virtex-7 FPGA
- Cost 1948 slice, 34 DSP
- Number of registers in the processing datapath : 34, 24 bit

Fault Tolerant 2-DOF

- Applied the methodology
- Correction factors are applied to 3 out of 5 blocks
 - Final gain matrix computation
 - Control output computation
 - Difference computation
- Number of "corrected" registers: 8 (out of 34)
- Correction phase: latency (in clock cycles) for computing one element of the final gain matrix
- Correction gains are constants:

Conclusions & Future work

Fault Tolerant 2-DOF

- The original architecture requires minimum changes:
 - Control signal generation redesigned for rewind
 - Modified data-path for adding the correction offset factors
- Control block:
 - Difference between reference and output value
 - Multiplication with correction gains

Fault Tolerant 2-DOF - with reference

- Duplication of the FT 2-DOF design and connect the 2 instances in reaction;
- Application specific Filter range validation filter that does a check that outputs are in the desired value range

ESA ITI REDOUBT

Conclusions & Future work

Reliability analysis

- Fault probability 10^{-5}
- TMR and the 2-DOF with correction controller (CC)
- Output error gaussian distributions

Method	μ	Σ
CC	0.000841282044353	0.002051307070919
TMR	0.010365724617813	3.952222463580792

Overview & Objectives	Control based fault tolerance	Use case	Conclusions & Future work

Reliability analysis - simulation

ESA ITI REDOUBT

Overview & Objectives	Control based fault tolerance	Use case	Conclusions & Future work
Implementation	n Results		

- The feedback correction control loop adds and overhead of around 1.3x, while the circuit duplication solution has an overhead of 2.7x with respect to the baseline circuit
 - Multiplication with the correction constants is performed using conventional multiplication in FPGA implemented with DSP blocks –, and not optimized constant based multiplication

Design	Slices	Slice	Slice	DSP	Frequency
		LUT	Registers	Blocks	[MHz]
Baseline	1948	3033	5181	34	142
FT with gold reference	2257	3782	5290	46	100
FT	3465	6637	7265	92	100

|--|

Control based fault tolerance

Use case

Conclusions & Future work

Outline

- Overview & Objectives
- 2 Control based fault tolerance

3 Use case

Conclusions & Future work

Conclusions & Future work

- We have analysed and validated the control based approach for improved fault tolerance of datapath processing pipelines:
 - Correction controller design
 - The operation of the correction process
 - Proposed a solution for the reference problem
- Future work:
 - Applications: image processing pipeline
 - Reference problem using reduced precision replicas

Overview & Objectives	Control based fault tolerance	Conclusions & Future work
Thank you!		

ESA ITI REDOUBT