

Low Energy Wireless Imaging System (LEWIS)

Mitko Tanevski

The LEWIS hardware components

The LEWIS hardware components

Presentation Outline

- Architecture and Key Component Choices
 - Image Sensor Choice
 - RF Module Choice
 - MCU Choice
- Wireless Camera Design
- Wireless Access Point Design
- Final System and Demo
- Conclusion

Architecture choice – Integration Strategy

• Wireless Communication module as separate HW

• Tight Integration with Camera / WAP

Image sensor choice

- Future-proof? Space qualified? (roadmap)
- (Relatively): Low-Power, high resolution, small size

e2v EV76C661 1280x1024 pixels 200 mW Peak QE > 65% 12.7 x 12.7 mm 10 bits per pixel Max. 60 fps

Images: teledyne-e2v

MCU choice

- Low-Power and small size
- Space Qualified (radiation hardened/tolerant)

Vorago Technologies VA10820 50MHz MCU 32KB data, 128KB program >300K rad (Si) -55 to +125 °C Current at max. activity: 105mA (~160 mW)

RF Module choice

- Is it already space qualified?
- How can we use it in a space application anyways?
- Can we hope to obtain access to the IP?
- What if we ignore total-dose and focus on latch-up immunity only?

RF Module choice

- Low-Power and small size
- Access to the platform through the manufacturer

EM Microelectornics EM9403 - Module SoC: 32bit MCU @24MHz (136kB ROM incl. LL and stack, 128kB OTP, 48kB instr. RAM 28kB data RAM) Bluetooth 5.0 LE 3.0 mA peak receiver current 1 µA connected sleep mode

• Latch-up protection circuit added

Wireless Camera Design

Camera First Light (Aug 2017)

One of the first colour photos

Wireless Camera Design

- Standby mode: only RF module powered and advertising (pre launch)
- Active mode: MCU Powered and master

Wireless Camera Design

Wireless Camera Standby Mode

- Each camera is advertising and connectable
- MCU and all other components are not powered
- Once enabled the RF module powers the MCU (one way latch) and switches to HCI

Wireless Access Point Design

 SpaceWire RMAP to SPI bridge and the same MCU and RF Module as the wireless camera

Wireless Access Point Design

LEWIS Test results

- Wireless camera max. power consumption
 0.78 W (155 mA @5V; Image acquisition)
- Wireless camera standby power consumption
 10.2 mW (2.03 mA @5V; 49 mAh/24h)
- Access point MCU PCB max. power consumption
 0.24 W (8.51 mA @28V)

LEWIS Test results

• Range Test – Image transfer up to 7m LoS

- Wireless communication protocol test
- Access point functionality test

Summary of HW and SW developed

- Wireless camera in flex-rigid
- Wireless Camera Software/Firmware
 - High level communication protocol
 - Bluetooth ACL driver (HCI + onboard MCU for the standby)
 - Image sensor driver
 - FIFO Frame Buffer Driver
 - Flash memory driver and simple file system

• WAP MCU PCB

WAP Software/Firmware

- Communication
- SpaceWire RMAP to SPI bridge in FPGA
- MCU driver for SpaceWire RMAP to SPI bridge
- Bluetooth ACL driver (Similar as for the camera)

• EGSE console application

One of the recent photos

Conclusion

Questions?

Batteries

- Saft LO35SX
- 2/3 C (L=35.9mm, Ø=25.9mm)
- Nominal Capacity 2.2 Ah
- Nominal Voltage 2.8 V
- Operating Temp. -60°C +70°C
- Typical weight 30 g
- Max. continuous current 2A
- Open circuit volt. 3V

