
ESA UNCLASSIFIED - For Official Use

Housekeeping Telemetry Viewer:
10 years of operations

Jakob Livschitz

ESA/TEC-SWT

Lars Fiedler

EUMETSAT/LEO

ESA UNCLASSIFIED - For Official Use ESA | 03/12/2019 | Slide 2

HKTV stands for House-keeping Telemetry Viewer.

In essence, HKTV is a packet1 viewer and analyzer.

1What is packet? A chunk of data with some properties: length, type (TM/TC), APID. Example: CCSDS packet.

What is HKTV?

ESA UNCLASSIFIED - For Official Use ESA | 03/12/2019 | Slide 3

HKTV development has been initiated by EUMETSAT exactly 10 years ago
as an in-house project to enable the analysis of IASI2

data collected during AIT at Satellite level:

• telemetry

• telecommands

• science data.

For:

• reporting, trending, investigation, and

• to preserve knowledge in long term program.
2Part of EUMETSAT Polar System, on board Metop-A,B,and C satellite.

Motivation

ESA UNCLASSIFIED - For Official Use ESA | 03/12/2019 | Slide 4

HKTV in 2009:

• Monolithic Java application (only standalone processing on one PC)

• Java 5 and 6 support

• GUI based on Java Swing

• Proprietary archive format

• Plotting based on JFreeChart

• Reporting based on JFreeReport

History

ESA UNCLASSIFIED - For Official Use ESA | 03/12/2019 | Slide 5

HKTV in 2009-2019 supports:

• IASI on Metop

• MHS on Metop

• IASI-NG on Metop-SG

• METIMAGE on Metop-SG

• Metop-SG (all instruments)

HKTV past and current use

ESA UNCLASSIFIED - For Official Use ESA | 03/12/2019 | Slide 6

HKTV in 2019:

• Monolithic Java application (main target platform: MacOS)

• Distributed processing support via message bus (ActiveMQ)

• PUS support

• Java 8-13 support

• GUI based on Java Swing

• Archive format: proprietary and MongoDB

• Plotting based on JFreeChart

• Reporting based on JFreeReport

• Synoptic displays based on SVG/HTML/JavaScript and JavaFX

Good tools survive…
with little maintenance

ESA UNCLASSIFIED - For Official Use ESA | 03/12/2019 | Slide 7

HKTV follows the following concepts:

• One Click – satisfy the user, not the requirement

• AGILE

• KISS (keep it small and simple): if functionality is needed in >90% of use
cases, it goes into the kernel, otherwise it’s implemented as an extension
(dedicated java package per instrument). This keeps the kernel very simple.

• YAGNI (you aren't gonna need it): never process anything unless really
needed. Opaque packets remain the only data always available. Everything else,
e.g. parameters are extracted only upon request. Plots painted only if visible.

• CI/CD with automated testing

Concepts

ESA UNCLASSIFIED - For Official Use ESA | 03/12/2019 | Slide 8

HKTV is built around a data bus. Every CCSDS packet is pushed through this bus.
The bus is implemented in ActiveMQ, meaning that you can have both local and
remote clients.

Once you want to add an additional component (a window, data processing,
specific storage, etc.) just subscribe to the data bus.

Each data consumer runs in a separate thread.

Architecture

ESA UNCLASSIFIED - For Official Use ESA | 03/12/2019 | Slide 9

Main window

ESA UNCLASSIFIED - For Official Use ESA | 03/12/2019 | Slide 10

Main window

ESA UNCLASSIFIED - For Official Use ESA | 03/12/2019 | Slide 11

Main window

ESA UNCLASSIFIED - For Official Use ESA | 03/12/2019 | Slide 12

Main window

ESA UNCLASSIFIED - For Official Use ESA | 03/12/2019 | Slide 13

HKTV Time Series:

ESA UNCLASSIFIED - For Official Use ESA | 03/12/2019 | Slide 14

• DataProvider – pushes packets into the system

• PacketSaver – saves received packets

• PacketFormatDetector - detects packet format

• StreamConsistencyChecker – checks input stream (e.g. OBT or SSC jumps)

• TimeCorrelation - OBT <-> Java time

• Archive – stores data

• Automation – infrastructure to run scripts

• LimitsChecker

• SynopticsDisplay (e.g. redundancies switch)

• TimeSeriesDisplay (e.g. for temperatures)

HKTV core components

ESA UNCLASSIFIED - For Official Use ESA | 03/12/2019 | Slide 15

HKTV implements a bunch of input data providers. As HKTV message bus requires
data packets on input, some preprocessing is usually required to extract/generate
the packet from the input data. Supported data sources:

• Local files with CCSDS packets, CADU stream, MMFU SCOE dumps, UDMS
dumps, IRIG dumps, etc.

• Remote TCP connection (incoming/outgoing): CCSDS packet with some
optional headers

• Data loading from CCS5 MySQL database

Data loaders are light-weight components (100-200 lines) extracting the data from
the input source and putting onto the bus, so it’s very easy to add a new one.

Input data providers

ESA UNCLASSIFIED - For Official Use ESA | 03/12/2019 | Slide 16

HKTV supports several output data formats:

• proprietary HKP-2 format (portable house-keeping data format)

• MHS SD archive data format

• CCSDS packet stream

• Easily extensible to add other data formats

Data savers

ESA UNCLASSIFIED - For Official Use ESA | 03/12/2019 | Slide 17

Default implementation determines packet format based on PUS service/subservice
and fixed values as specified in the MIB database.

Tailored mission-specific implementations can be provided overriding the virtual
method (e.g. for performance reasons).

Packet format detector

ESA UNCLASSIFIED - For Official Use ESA | 03/12/2019 | Slide 18

HKTV implements archive in MongoDB.

The archive stores:

• opaque data (bytestream of CCSDS packets received)

• decomposed data (each mnemonic stored separately: high resources need!)

What exactly is stored is configurable: opaque packets, CCSDS packet headers,
serialized packets, decomposed packets (individual parameters).

Archive

ESA UNCLASSIFIED - For Official Use ESA | 03/12/2019 | Slide 19

HKTV implements automation in Groovy language.

From the Groovy environment access is granted to all HKTV components.

Groovy execution is mirrored line-by-line into as-run report.

Example to load a set of CADU files:

Automation

logger.info("starting CADUs data feed")
x = new CaduStreamDataProvider()
app.setDataProvider(x)
path = "/data/REC_2019_09_13_14_11_59_TMRATE_FORMAL_RUN_SMDA/"
x.loadCadu(new File(path + "0.dat"))
x.loadCadu(new File(path + "1.dat"))
x.loadCadu(new File(path + "2.dat"))
x.loadCadu(new File(path + "3.dat"))
logger.info("CADU data feed finished")

ESA UNCLASSIFIED - For Official Use ESA | 03/12/2019 | Slide 20

HKTV supports synoptics displays specified in SVG
or HTML.

The displays receive the full data feed, including
parameter status. JavaScript is used for additional
data processing, special effects, etc.

Synoptics displays

ESA UNCLASSIFIED - For Official Use ESA | 03/12/2019 | Slide 21

Fully SCOS2000 compatible.

In addition, different limit sets can be chosen (e.g. for ambient, thermal vacuum,
etc.)

Limits checking

ESA UNCLASSIFIED - For Official Use ESA | 03/12/2019 | Slide 22

Each monitoring parameter is represented internally in DataField class: can be
PhysicalDataField or SyntheticDataField.

To retrieve data, a Fetcher shall be obtained using DataField.getFetcher().
Normally it is a BitStreamFetcher. A fetcher is a highly-optimized class going
directly into bit stream and getting the necessary piece of data.

But it’s also flexible due to a proxying approach, e.g.

• PatchableFetcher(Fetcher): real-time data patching

• ConditionalFetcher(Fetcher): conditional field

• EnumFetcher(Fetcher): fetch number and apply textual calibration

And this is absolutely transparent to the users.

Data fetching concept

ESA UNCLASSIFIED - For Official Use ESA | 03/12/2019 | Slide 23

Performance depends on the deployment configuration, e.g. archive options,
plotting options, synoptic displays, etc.

Reference configuration loading Metop-SG CADU stream processes >5000 CCSDS
packets per second on a 14-core Mac Pro (Xeon 2.5GHz). Deployment options: no
archive, 4 plots, no synoptic displays.

Switching on MongoDB archive on local machine reduces performance by ~30-
90% depending on settings (proprietary HKTV archive has no performance
impact).

Build time (gradle): ~2 minutes.

Performance

ESA UNCLASSIFIED - For Official Use ESA | 03/12/2019 | Slide 24

HKTV memory footprint:

• 15000 IASI-NG packets: 1.3GB

• 365000 MetOp-SG packets: 5.6GB

Performance

ESA UNCLASSIFIED - For Official Use ESA | 03/12/2019 | Slide 25

Each data consumer runs in a separate thread. Thus performance on a single
machine is limited by the number of cores.

The slowest data consumer defines the length of backlog, since packets have to be
kept in memory as long as they have not been processed.

It is possible to connect to the message bus remotely via TCP, thus some
processing can be made on a remote machine.

Scalability

ESA UNCLASSIFIED - For Official Use ESA | 03/12/2019 | Slide 26

MDB is represented by a set of XML files and includes definitions of:

• TM, TC and Science data packets description

• Transfer functions definitions

• Limits definitions

• Plots definitions

• User displays definitions

• Reporting can also be customized, but functioning defaults are provided

Mission database

ESA UNCLASSIFIED - For Official Use ESA | 03/12/2019 | Slide 27

Tailoring means:

• Creation of a new application class (inherit from AppBase and implement
abstract methods), tailor creation of windows and menus

• Provision of mission database (manual or automatic conversion; convertors
from SCOS MIB, RangeDB XLS and EGS-CC CDM are available)

• Cosmetic: background, logo, etc.

If needed: implementation of instrument-specific data processing

Tailoring to a new mission

ESA UNCLASSIFIED - For Official Use ESA | 03/12/2019 | Slide 28

HKTV in action

MHS bench:

• 2 DELL laptops

• 2 monitors

• 2 Cisco switches

• 1 printer

ESA UNCLASSIFIED - For Official Use ESA | 03/12/2019 | Slide 29

HKTV in action

MHS bench:

• 2 DELL laptops

• 2 monitors

• 2 Cisco switches

• 1 printer

ESA UNCLASSIFIED - For Official Use ESA | 03/12/2019 | Slide 30

HKTV in action

IASI-NG bench:

• Mac Pro

• Cisco switch

• CCS5 simulator (2 Raspberry
PIs)

ESA UNCLASSIFIED - For Official Use ESA | 03/12/2019 | Slide 31

• Java proved to be the right choice due to its API stability and multiplatform
support. HKTV required almost no adaptation moving from Java 5 to Java 13.

• Java Swing proved to be the right choice for UI. Other technology, e.g. SWT,
JavaFX or Web-based have not remained that stable over 10 years and would have
required significant adaptations.

• Monolithic application is appropriate for such project (~50K LOC). Clean
package and component separation is essential. Other approaches e.g. OSGi or
service based would have often required reengineering and adaptations.

• Data bus concept proved to be extremely flexible and extensible. Numerous
data sources and consumers added without any changes being necessary.

• Build system migrated from ant to gradle: minor change.

Looking back

	Slide Number 1
	What is HKTV?
	Motivation
	History
	HKTV past and current use
	Good tools survive… �with little maintenance
	Concepts
	Architecture
	Main window
	Main window
	Main window
	Main window
	HKTV Time Series:
	HKTV core components
	Input data providers
	Data savers
	Packet format detector
	Archive
	Automation
	Synoptics displays
	Limits checking
	Data fetching concept
	Performance
	Performance
	Scalability
	Mission database
	Tailoring to a new mission
	HKTV in action
	HKTV in action
	HKTV in action
	Looking back

