
Autonomous Orbital Navigation

AUTONAV

Summary

1. Activity Overview

2. Topic addressed (orbital transfer)

3. Market size

4. HW components overview

5. Method and Constraints, I/Os

6. SW structure, Tools

7. Validation approach

8. Results

9. Lesson learned/Conclusion

10. Future work

Activity Overview
• Schedule, Cost: 1y (actual 14 months, 250 k)
• Purpose

- Port AUTONAV Algorithm from Matlab to C
- Validate the C version: precision on x86 and performance on LEON CPU
- Get familiar with ESA standards

• Consortium
1. Thales Alenia Space in Italy: Matlab Algorithm an Test Scenarios
2. Thales Systems Romania: C porting, design, testing, validation
(Test App and run scenarios)

Market Size – Orbit Transfer

Current Situation

 Transfer Takes typically from 6 to 12 months (GEO).

 Many contacts with the ground segment are required for the attitude control and the

orbital management.

 The ground segment support involves a significant increase in mission costs: for

example, a 6 months’ orbital transfer can cost about 1-2 M€

By Using AUTONAV (both Geostationary and Constellations) i.e. S4I (Satellite for

Italy) and G2G (Galileo Second Generation), it can be expected usage of about 30

completely electric platforms.

 This development direction can provide a global improvement in competitiveness

(50 M€ for the electric platforms)

Orbital transfer challenge
Problem: during the orbital transfer the real trajectory can be quite different with

respect to the optimal one due to perturbations or PPS underperformances.

Solution:

1. Before launch the optimal transfer solution is calculated in the GS and it is stored

in the satellites computer memory.

2. During the LEOP the satellite uses the stored database to compute the thrust

strategy (thrusters switch on/off and firing direction for optimal maneuvers).

During this phase the OBSW stores continuously the local position and velocity

from the GPS sensor.

3. When required AUTNAV upgrades the database computing the new optimal

transfer trajectory from the local measured position to the nominal target orbit.

Generic algorithm requirements
 The orbital transfer trajectory of an electrical satellite, from the initial orbit to the final

one
 The optimal thrust strategy in order to minimize the orbital transfer time;
 The optimal thrust strategy computation for every orbital transfer (changing every

orbital parameter: semi-major axis, eccentricity, inclination etc.)
 The optimal thrust strategy computation for every satellite propulsion system

(changing thrust and specific impulse)
 The optimal thrust strategy computation for every satellite launch mass
 That the optimal thrust strategy takes into account the perturbation effects (as J2)

and eclipse phases
 The optimal thrust strategy takes into account the eclipse effects switching off the

thrusters during the eclipse phases
 The optimal thrust strategy takes into account unpredictable propulsion system

underperformances

Generic SW component requirements
 Functional Requirements (Orbital transfer computation, propulsion, mass,

etc.)
 Performance Requirements (Convergence time, Perturbations)
 External Interfaces (Use own interfaces, Cycle entry point, Component ITFs ,

Handle Exceptions, etc.)
 Resources Requirements (RAM, ROM, CPU)
 Design requirements and implementation constraints (ECSS, Criticality,

libraries)
 Portability requirements
 Software Quality requirements (PA)
 Software maintainability requirements
 Software Reliability requirements (Defensive Impl, Err detection/handling)
 Software Safety requirements

AUTONAV – On Board SW Integration

Work Performed - TSR
Development
1. Build AUTONAV Architecture

2. Detailed design (Interfaces, Behavior)

3. C code Implementation

 With aid of code generation (in Rhapsody) Started on Matlab

version

Test/Validation
Built 2 Test Applications:
 For precision on x86 (Linux)
 For performance on LEON with TSIM

Satellite main components
Propulsion Boards
The Propulsion I/O board interfaces the following Spacecraft equipment
7+7 Reaction Control Thrusters + Heaters

Attitude determination/Control
Magnetometers
Fine Sun Sensors
Star Tracker

Attitude Control
Magnetotorquers
Reaction Wheels
Reaction Wheels (RW)

Orbit determination
GPS

Approach – Mathematical Method
 TAS-I has developed internally the optimization software (SOFTT), based

on indirect solution techniques

 Pre-existing Research Activity: more than 1000 different scenarios have
been studied

 Maximum Principle applied where the Hamiltonian is defined along the
transfer

SOFTT: Space Optimal Finite Thrust Transfer

Approach - Constraints

 Convergence criteria as main metric to compute and assess the

optimal thrust strategy

 Discretization of more solutions around the optimal state and

selection of the optimal co-state

 Convergence time

Co-state: (Lagrange multipliers as time-dependent variables)

Approach Advantages
 Averaging techniuques provides fast and converging computing methods

for long orbital transfer (computational time compatible with the available
CPU)

 Bigger payload mass up to 1/5 of the satellite launched mass

 Optimal trajectory within minimum transfer time and minimum

consumption of propellant

 Orbital thrust strategy computation for every orbital transfer, for every

satellite launch mass and propultion system

Algorithm inputs (1/2)

1. Database
• X – states
• L – co-states
• w – particular anomaly for each state

2. Configuration parameters
• Related to the satellite structure
• Related to the initial orbit and the final orbit
• Related to the earth and sun characteristics
• Related to the boundary conditions
• Related to the perturbation

Algorithm inputs (2/2)

3. Orbital data – provides information on the current orbital status of the satellite
• Epoch as Julian Date (current time)
• Position vector components
• Velocity vector components
• Actual Mass
• Progressive anomaly at Epoch (current anomaly)

Algorithm outputs
• Database – if the algorithm reached convergency it will update the

database
• Firing Direction

• Anomaly to targeted orbit
• Thrust unit vector
• Switching function / control force

Interfaces: the system interface is mainly composed by three subroutines:
1. Fir_Dir: calculates the thrust direction and the switching function to implement the

optimal maneuvers;

2. Avg_State: calculates the average state starting from the measured position on
the current time.

3. Optimizer: computes the new optimal thrust strategy (at regular intervals). If the
solution converges, this subroutine provides as output the new database that will
be used for the following computation.

Database
(stored in S/C memory)

Fir_Dir
(computes the thrust

direction)

Avg_State
(computes the satellite
position and velocity)

Optimizer
(computes the new
optimal solution to

upgrade the database)

GPS New
Database

Development cycle

Requirement
Baseline

Technical
Specification

Architectural
Design

Design and
Implementation

Validation
testing

Unit/Integration
Testing

Validation with
respect to TS

Validation with
respect to RB

Phase 1 Phase 2

Evolution according to algorithm
 updates

Tutoring Tutoring

Product Assurance activities

Thales Alenia Space in Italy

Thales Systems Romania

Used Tools
 Rhapsody

 Modeling and design, traceability of requirements

 Generating code and documents

 Software engineering (with UML and SysML)

 Test applications

 TSIM
 Emulating LEON-based computer systems (LEON3 and

LEON4)

Matlab

 Run the simulations, generate benchmark

Development with Rhapsody

ECSS-E-ST-40C

Rhapsody SW Architecture

Provided:
Implemented by
AUTONAV SW module
Explicitly used by host
SW
Required:
Requested by
AUTONAV SW to
compile

SW Modules Used Interfaces

SW Modules Used Interfaces

• I_DataBaseItf – read
and write states and
costates

• I_ConfigParamsItf –
read configuration
parameters

• I_Orb_DataItf – read
orbital data

• I_Firing_DataItf – write
fire direction output

• I_Avg_StateItf – call
average state routines

• I_OptimizerItf – call
optimizer part

• I_Fir_DirItf – call firing
direction

Generic algorithm Call Sequence

• I_Avg_StateItf
– internal
interface to call
average state
step

• I_OptimizerItf
– internal
interface to call
optimizer step

• I_Fir_DataItf –
internal
interface to call
firing direction
step

Component Call Sequence - Average State

Average
 Math lib calls
 Eclipse

exception
 Disturbances

Component Call Sequence – Optimizer

Convergence criteria: defined by threshold. Euclidian norm of the
difference between new state and the old database state < 1e-6

Component Call Sequence – Firing Direction

Calculates
direction Vector
for Thrusters at
each transfer step
Dep. O number of
DB entries.

Validation approach

Goal

 C Components output vs Matlab reference within

specified range

 Implemented interfaces are providing access

according to the desired design/behavior

Validation setup

 A Test Application will be written that loads internally in RAM the database provided

as text files, and then the AUTONAV SW will be called

 inputs files represent test scenarios will be used for validating the C implementation

regarding functionality, precision and performance

Validation – SW architecture

Validation challenges, adaptations
 Uniformity of Matlab Algorithm and C implementation:

 Matrix inversion
 Factorization
 Linear solver
 Matrix/Array operations

 Test scenarios execution on x86 and TSIM
NaN: Rounding errors lead to ‘zero’ input
NaN side effects
 Numerical issues within algorithm iterations(in

matrix inversion, factorization, extrapolation,
discontinuity points)

Results Precision (1/6)
 Absolute errors between Matlab
and C execution of the output
Database

• 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣 = 𝑣𝑣𝑣𝑣𝑣𝑣𝐶𝐶 − 𝑣𝑣𝑣𝑣𝑣𝑣𝑀𝑀𝑣𝑣𝑀𝑀𝑣𝑣𝑣𝑣𝑀𝑀

Results Precision (2/6)
 Absolute errors between Matlab
and C execution of the output
Firing Direction
 This component repesents the
anomaly to the targeted orbit

𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣 = 𝑣𝑣𝑣𝑣𝑣𝑣𝐶𝐶 − 𝑣𝑣𝑣𝑣𝑣𝑣𝑀𝑀𝑣𝑣𝑀𝑀𝑣𝑣𝑣𝑣𝑀𝑀

Results Precision (3/6)
 Absolute errors between Matlab
and C execution of the output
Firing Direction
 This component repesents the
control action for thrusters
(tri-dimensional component)

𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣 = 𝑣𝑣𝑣𝑣𝑣𝑣𝐶𝐶 − 𝑣𝑣𝑣𝑣𝑣𝑣𝑀𝑀𝑣𝑣𝑀𝑀𝑣𝑣𝑣𝑣𝑀𝑀

• Results Precision (4/6)
 Absolute errors between Matlab
• and C execution of the output
• Firing Direction
 This component repesents the
• control action for thrusters
• (tri-dimensional component)

• 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣 = 𝑣𝑣𝑣𝑣𝑣𝑣𝐶𝐶 − 𝑣𝑣𝑣𝑣𝑣𝑣𝑀𝑀𝑣𝑣𝑀𝑀𝑣𝑣𝑣𝑣𝑀𝑀

Results Precision (5/6)
 Absolute errors between Matlab
and C execution of the output
Firing direction
 This component repesents the
control action for thrusters
(tri-dimensional component)

𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣 = 𝑣𝑣𝑣𝑣𝑣𝑣𝐶𝐶 − 𝑣𝑣𝑣𝑣𝑣𝑣𝑀𝑀𝑣𝑣𝑀𝑀𝑣𝑣𝑣𝑣𝑀𝑀

Results Precision (6/6)
 Absolute errors between Matlab
and C execution of the output
Firing Direction
 This component repesents the
force control able to turn on/off
the engines

• 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣 = 𝑣𝑣𝑣𝑣𝑣𝑣𝐶𝐶 − 𝑣𝑣𝑣𝑣𝑣𝑣𝑀𝑀𝑣𝑣𝑀𝑀𝑣𝑣𝑣𝑣𝑀𝑀

• Results Performance

 Leon3 CPU performance was assessed with Dhrystone and
Whetstone tests

 As the software is split in three components
 Average state computation
 Optimizer (the most CPU intensive)
 Firing direction

 Average and Firing direction are consuming less than 1% of overall
cost

 One iteration of ‘optimizer’ take 3h and 20 minutes on LEON3
 In worst case scenario with 50 optimizer iterations in these conditions

the test will take nearly 7 days to execute

Lessons Learned (1/2)
 Thales Romania has learned:

 AUTNAV algorithm specifics (from orbital parameters to thrusters,

precision and convergence related topics)

 How to develop Flight software compliant with ECSS standards

 To work with space specific CPUs (LEON3,4 family)

 To address and trace precision specific problems on C compiler

and Matlab framework
 Matrix inversion

 Power function mismatch between Matlab and C

 Matrix and arrays operations from Matlab were translated to C approach

• Lessons Learned (2/2)
 To develop SW components that is compatible with On Board SW

Platform

 To tailor ECSS standards depending on the needs and the
specifics of the project

 Thales Romania has managed the project in a novel way by
developing architecture, design and development in an UML
model which was also used for documentation generation and
can support Requirements traceability and Unit Testing

• Conclusions
 LEON3 performances are not enough, but some optimization of the algo

and compiler options will be explored on Phase 2

 Very good match between Matlab and C implementations

 TSR successfully ported the algorithm in C, clearing the way to qualify the

AUTONAV SW for space flight

 TSR knowledge in the navigation and space qualified SW field has

consolidated to a level that recommends it for future collaborations

Future Work – new HW baseline, TRL-7 target

TAS-I clarifies that the adoption of the more powerful LEON4FT multicore CPU

(GR740) is ongoing and implemented by the development of the IPAC (SMU-

NG) computer. This is being developed in two versions (HIREL with limited

number of “COTS” components and “Full HIREL”. The latter is planned to reach

TRL-7 in mid-2021 thanks to Italian National programme (Ital-GovSatCom)

which is intended to use the AUTONAV as baseline

Future Work – qualified SW component (Cat C)

 Optimization of performances (algorithm options / compiler options)

 Fulfil Product Assurance activities

 Run Unit Test with ECSS specified target coverage

 Perform Integration tests, completion of traceability

 Provide complete documentation line

 Analyse adoption of new HW baseline (LEON4FT)

THANK YOU

	Slide Number 1
	Slide Number 2
	Slide Number 3
	Slide Number 4
	Slide Number 5
	Slide Number 6
	Slide Number 7
	Slide Number 8
	Slide Number 9
	Slide Number 10
	Slide Number 11
	Slide Number 12
	Slide Number 13
	Slide Number 14
	Slide Number 15
	Slide Number 16
	Slide Number 17
	Slide Number 18
	Slide Number 19
	Slide Number 20
	Slide Number 21
	Slide Number 22
	Slide Number 23
	Slide Number 24
	Slide Number 25
	Slide Number 26
	Slide Number 27
	Slide Number 28
	Slide Number 29
	Slide Number 30
	Slide Number 31
	Slide Number 32
	Slide Number 33
	Slide Number 34
	Slide Number 35
	Slide Number 36
	Slide Number 37
	Slide Number 38
	Slide Number 39
	Slide Number 40
	Slide Number 41
	Slide Number 42
	Slide Number 43
	Slide Number 44

