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Activity Overview
• Schedule, Cost: 1y (actual 14 months, 250 k)
• Purpose

- Port AUTONAV Algorithm from Matlab to C
- Validate the C version: precision on x86 and performance on LEON CPU
- Get familiar with ESA standards

• Consortium
1. Thales Alenia Space in Italy: Matlab Algorithm an Test Scenarios
2. Thales Systems Romania: C porting, design, testing, validation 
(Test App and run scenarios)



Market Size – Orbit Transfer

Current Situation

 Transfer Takes typically from 6 to 12 months (GEO). 

 Many contacts with the ground segment are required for the attitude control and the 

orbital management. 

 The ground segment support involves a significant increase in mission costs: for 

example, a 6 months’ orbital transfer can cost about 1-2 M€

By Using AUTONAV (both Geostationary and Constellations)  i.e. S4I (Satellite for 

Italy) and G2G (Galileo Second Generation), it can be expected usage of about 30 

completely electric platforms. 

 This development direction can provide a global improvement in competitiveness 

(50 M€ for the electric platforms)



Orbital transfer challenge
Problem: during the orbital transfer the real trajectory can be quite different with 

respect to the optimal one due to perturbations or PPS underperformances. 

Solution: 

1. Before launch the optimal transfer solution is calculated in the GS and it is stored 

in the satellites computer memory.

2. During the LEOP the satellite uses the stored database to compute the thrust 

strategy (thrusters switch on/off and firing direction for optimal maneuvers). 

During this phase the OBSW  stores continuously the local position and velocity 

from the GPS sensor.

3. When required AUTNAV upgrades the database computing the new optimal 

transfer trajectory from the local measured position to the nominal target orbit. 



Generic algorithm requirements
 The orbital transfer trajectory of an electrical satellite, from the initial orbit to the final

one
 The optimal thrust strategy in order to minimize the orbital transfer time;
 The optimal thrust strategy computation for every orbital transfer (changing every 

orbital parameter: semi-major axis, eccentricity, inclination etc.)
 The optimal thrust strategy computation for every satellite propulsion system 

(changing thrust and specific impulse)
 The optimal thrust strategy computation for every satellite launch mass
 That the optimal thrust strategy takes into account the perturbation effects (as J2) 

and eclipse phases
 The optimal thrust strategy takes into account the eclipse effects switching off the 

thrusters during the eclipse phases
 The optimal thrust strategy takes into account unpredictable propulsion system 

underperformances



Generic SW component requirements
 Functional Requirements (Orbital transfer computation, propulsion, mass, 

etc.) 
 Performance Requirements (Convergence time, Perturbations)
 External Interfaces (Use own interfaces, Cycle entry point, Component ITFs , 

Handle Exceptions, etc.)
 Resources Requirements (RAM, ROM, CPU)
 Design requirements and implementation constraints (ECSS, Criticality, 

libraries)
 Portability requirements
 Software Quality requirements (PA)
 Software maintainability requirements
 Software Reliability requirements (Defensive Impl, Err detection/handling )
 Software Safety requirements 



AUTONAV – On Board SW Integration



Work Performed - TSR
Development 
1. Build AUTONAV Architecture

2. Detailed design (Interfaces, Behavior) 

3. C code Implementation

 With aid of code generation (in Rhapsody) Started on Matlab

version

Test/Validation
Built 2 Test Applications:
 For precision on x86 (Linux)
 For performance on LEON with TSIM



Satellite main components
Propulsion Boards
The Propulsion I/O board interfaces the following Spacecraft equipment
7+7 Reaction Control Thrusters + Heaters

Attitude determination/Control
Magnetometers
Fine Sun Sensors
Star Tracker

Attitude Control
Magnetotorquers
Reaction Wheels 
Reaction Wheels (RW)

Orbit determination
GPS



Approach – Mathematical Method
 TAS-I has developed internally the optimization software (SOFTT), based 

on indirect solution techniques

 Pre-existing Research Activity: more than 1000 different scenarios have 
been studied 

 Maximum Principle applied where the Hamiltonian is defined along the 
transfer

SOFTT: Space Optimal Finite Thrust Transfer



Approach - Constraints 

 Convergence criteria as main metric to compute and assess the 

optimal thrust strategy

 Discretization of more solutions around the optimal state and 

selection of the optimal co-state

 Convergence time

Co-state: (Lagrange multipliers as time-dependent variables)



Approach Advantages
 Averaging techniuques provides fast and converging computing methods 

for long orbital transfer (computational time compatible with the available 
CPU)

 Bigger payload mass up to 1/5 of the satellite launched mass

 Optimal trajectory within minimum transfer time and minimum 

consumption of propellant

 Orbital thrust strategy computation for every orbital transfer, for every 

satellite launch mass and propultion system



Algorithm inputs (1/2)

1. Database
• X – states
• L – co-states
• w – particular anomaly for each state

2. Configuration parameters
• Related to the satellite structure
• Related to the initial orbit and the final orbit
• Related to the earth and sun characteristics
• Related to the boundary conditions
• Related to the perturbation



Algorithm inputs (2/2)

3. Orbital data – provides information on the current orbital status of the satellite
• Epoch as Julian Date (current time)
• Position vector components
• Velocity vector components
• Actual Mass
• Progressive anomaly at Epoch (current anomaly )



Algorithm outputs
• Database – if the algorithm reached convergency it will update the 

database
• Firing Direction

• Anomaly to targeted orbit
• Thrust unit vector
• Switching function / control force



Interfaces: the system interface is mainly composed by three subroutines:
1. Fir_Dir: calculates the thrust direction and the switching function to implement the 

optimal maneuvers;

2. Avg_State: calculates the average state starting from the measured position on 
the current time.

3. Optimizer: computes the new optimal thrust strategy (at regular intervals). If the 
solution converges, this subroutine provides as output the new database that will 
be used for the following computation.

Database 
(stored in S/C memory)

Fir_Dir
(computes the thrust 

direction)

Avg_State
(computes the satellite 
position and velocity)

Optimizer
(computes the new 
optimal solution to 

upgrade the database)

GPS New 
Database 



Development cycle

Requirement
Baseline

Technical
Specification

Architectural
Design

Design and
Implementation

Validation
testing

Unit/Integration
Testing

Validation with
respect to TS

Validation with
respect to RB

Phase 1 Phase 2

Evolution according to algorithm
 updates

Tutoring Tutoring

Product Assurance activities

Thales Alenia Space in Italy

Thales Systems Romania



Used Tools
 Rhapsody

 Modeling and design, traceability of requirements

 Generating code and documents

 Software engineering (with UML and SysML)

 Test applications

 TSIM
 Emulating LEON-based computer systems (LEON3 and 

LEON4)

Matlab

 Run the simulations, generate benchmark



Development with Rhapsody

ECSS-E-ST-40C



Rhapsody SW Architecture

Provided: 
Implemented by 
AUTONAV SW module
Explicitly used by host 
SW
Required: 
Requested by 
AUTONAV SW to 
compile  



SW Modules Used Interfaces



SW Modules Used Interfaces

• I_DataBaseItf – read 
and write states and 
costates

• I_ConfigParamsItf –
read configuration
parameters

• I_Orb_DataItf – read 
orbital data

• I_Firing_DataItf – write 
fire direction output

• I_Avg_StateItf – call 
average state routines

• I_OptimizerItf – call 
optimizer part

• I_Fir_DirItf – call firing
direction



Generic algorithm Call Sequence 

• I_Avg_StateItf 
– internal 
interface to call 
average state 
step

• I_OptimizerItf
– internal 
interface to call 
optimizer step

• I_Fir_DataItf –
internal 
interface to call 
firing direction 
step



Component Call Sequence - Average State

Average 
 Math lib calls
 Eclipse 

exception
 Disturbances



Component Call Sequence – Optimizer

Convergence criteria: defined by threshold. Euclidian norm of the 
difference between new state and the old database state < 1e-6



Component Call Sequence – Firing Direction

Calculates 
direction Vector
for Thrusters at 
each transfer step
Dep. O number of 
DB entries.



Validation approach

Goal

 C Components output vs Matlab reference within 

specified range

 Implemented interfaces are providing access 

according to the desired design/behavior



Validation setup

 A Test Application will be written that loads internally in RAM the database provided 

as text files, and then the AUTONAV SW will be called

 inputs files represent test scenarios will be used for validating the C implementation 

regarding functionality, precision and performance



Validation – SW architecture



Validation challenges, adaptations
 Uniformity of Matlab Algorithm and C implementation:

 Matrix inversion
 Factorization
 Linear solver
 Matrix/Array operations 

 Test scenarios execution on x86 and TSIM
NaN: Rounding errors lead to ‘zero’ input
NaN side effects
 Numerical issues within algorithm iterations(in 

matrix inversion, factorization, extrapolation, 
discontinuity points)



Results Precision (1/6)
 Absolute errors between Matlab 
and C execution of the output 
Database

• 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣 = 𝑣𝑣𝑣𝑣𝑣𝑣𝐶𝐶 − 𝑣𝑣𝑣𝑣𝑣𝑣𝑀𝑀𝑣𝑣𝑀𝑀𝑣𝑣𝑣𝑣𝑀𝑀



Results Precision (2/6)
 Absolute errors between Matlab 
and C execution of the output 
Firing Direction
 This component repesents the 
anomaly to the targeted orbit

𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣 = 𝑣𝑣𝑣𝑣𝑣𝑣𝐶𝐶 − 𝑣𝑣𝑣𝑣𝑣𝑣𝑀𝑀𝑣𝑣𝑀𝑀𝑣𝑣𝑣𝑣𝑀𝑀



Results Precision (3/6)
 Absolute errors between Matlab 
and C execution of the output 
Firing Direction
 This component repesents the 
control action for thrusters
(tri-dimensional component)

𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣 = 𝑣𝑣𝑣𝑣𝑣𝑣𝐶𝐶 − 𝑣𝑣𝑣𝑣𝑣𝑣𝑀𝑀𝑣𝑣𝑀𝑀𝑣𝑣𝑣𝑣𝑀𝑀



• Results Precision (4/6)
 Absolute errors between Matlab 
• and C execution of the output 
• Firing Direction
 This component repesents the 
• control action for thrusters
• (tri-dimensional component)

• 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣 = 𝑣𝑣𝑣𝑣𝑣𝑣𝐶𝐶 − 𝑣𝑣𝑣𝑣𝑣𝑣𝑀𝑀𝑣𝑣𝑀𝑀𝑣𝑣𝑣𝑣𝑀𝑀



Results Precision (5/6)
 Absolute errors between Matlab 
and C execution of the output 
Firing direction
 This component repesents the 
control action for thrusters
(tri-dimensional component)

𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣 = 𝑣𝑣𝑣𝑣𝑣𝑣𝐶𝐶 − 𝑣𝑣𝑣𝑣𝑣𝑣𝑀𝑀𝑣𝑣𝑀𝑀𝑣𝑣𝑣𝑣𝑀𝑀



Results Precision (6/6)
 Absolute errors between Matlab 
and C execution of the output 
Firing Direction
 This component repesents the 
force control able to turn on/off
the engines

• 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣 = 𝑣𝑣𝑣𝑣𝑣𝑣𝐶𝐶 − 𝑣𝑣𝑣𝑣𝑣𝑣𝑀𝑀𝑣𝑣𝑀𝑀𝑣𝑣𝑣𝑣𝑀𝑀



• Results Performance 

 Leon3 CPU performance was assessed with Dhrystone and 
Whetstone tests

 As the software is split in three components 
 Average state computation
 Optimizer (the most CPU intensive)
 Firing direction

 Average and Firing direction are consuming less than 1% of overall 
cost

 One iteration of ‘optimizer’ take 3h and 20 minutes on LEON3
 In worst case scenario with 50 optimizer iterations in these conditions 

the test will take nearly 7 days to execute



Lessons Learned (1/2)
 Thales Romania has learned:

 AUTNAV algorithm  specifics (from orbital parameters to thrusters, 

precision and convergence related topics)

 How to develop Flight software compliant with ECSS standards

 To work with space specific CPUs (LEON3,4 family)

 To address and trace precision specific problems on C compiler 

and Matlab framework 
 Matrix inversion 

 Power function mismatch between Matlab and C

 Matrix and arrays operations from Matlab were translated to C approach



• Lessons Learned (2/2)
 To develop SW components that is compatible with On Board SW 

Platform

 To tailor ECSS standards depending on the needs and the 
specifics of the project

 Thales Romania has managed the project in a novel way by 
developing architecture, design and development in an UML 
model which was also used for documentation generation and 
can support Requirements traceability and Unit Testing



• Conclusions
 LEON3 performances are not enough, but some optimization of the algo

and compiler options will be explored on Phase 2

 Very good match between Matlab and C implementations

 TSR successfully ported the algorithm in C, clearing the way to qualify the 

AUTONAV SW for space flight

 TSR knowledge in the navigation and space qualified SW field has 

consolidated to a level that  recommends it for future collaborations



Future Work – new HW baseline, TRL-7 target

TAS-I clarifies that the adoption of the more powerful LEON4FT multicore CPU 

(GR740) is ongoing and implemented by the development of the IPAC (SMU-

NG) computer. This is being developed in two versions (HIREL with limited 

number of “COTS” components and “Full HIREL”. The latter is planned to reach 

TRL-7 in mid-2021 thanks to Italian National programme (Ital-GovSatCom) 

which is intended to use the AUTONAV as baseline



Future Work – qualified SW component (Cat C)

 Optimization of performances (algorithm options / compiler options)

 Fulfil Product Assurance activities

 Run Unit Test with ECSS specified target coverage

 Perform Integration tests, completion of traceability

 Provide complete documentation line

 Analyse adoption of new HW baseline (LEON4FT)



THANK YOU
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