
N 7 S PA C E
ATMEL ARM BSP with CANopen library

Final Presentation Days 3-4 Dec 2019

Michał Mosdorf, Michał Kocon & The Team

2

Agenda

• N7 Space introduction

• Project scope and objectives

• Design and development aspects

• Testing approach

• Conclusion and project continuation

2019

3

N7 Space

• Joined venture between SPACEBEL and N7 Mobile
located Poland

• Company founded in 2017

• Started operation with projects previously executed by
N7 Mobile that were transferred to N7 Space

• Software engineering team located in Warsaw office with
space experience since 2014

• Focus on software development for upstream segment

• On-board software

• Leon3, Cortex-M7, Zynq

• MBSE

• ASN.1, SDL, AADL, MSC, Capella, TASTE

2019

4

Selected activities

• ESA missions

• CBK’s subcontractor in PROBA3 mission responsible for on-board software

• SPACEBEL’s subcontractor in HERA mission

• Software development for ARM ecosystem

• Board Support Package and Boot Loader development for Microchip
Cortex-M7 processor line

• CANopen library and RTEMS 5 demo applications

• CoreSight usage for multi-core software tracing on ARM Cortex-A53 Zynq

2019

©ESA–P. Carril

5

Selected activities

• MBSE tools development

• Qt based IDE for ASN.1 modelling with PUS-C template library

• PUS-C deployment with automatic generation toolset

• Database software, document generation ASN.1 modelling and
generation

• Capella plugins development

• ASN.1 and AADL generator from Capella models

• Test scripting languages

• EBNF, Language Server Protocol Based IDE for ECSS languages

• Providing TASTE support to target platform by integrating new
compiler toolchain

• Member of TASTE Steering Committee

2019

6

ARM BSP with CANopen library

• Project executed under ESA Polish Incentive Scheme with Microchip

• Software development activities for SAMV71 Cortex-M7 MCU

• Bootloader compliant with the ESA SAVOIR requirements

• Utilization of PUS-C stack supported by ASN.1/ACN formal modelling

• Board Support Package

• Driver library for MCU

• CANopen library implementing tailored ECSS-E-ST-50-15C

• Demonstration applications based on RTEMS 5

• Lifecycle and target TRL

• Project lifecycle and quality requirements based on tailored ECSS-E-ST-40C and
ECSS-Q-ST-80C

• Target criticality C and TRL6

2019

7

Bootloader Software

• Bootloader software for Cortex-M7 SAMV71

• Software requirements specification based on SAVOIR Flight Computer Initialisation Sequence Generic
Specification provided by ESA

• Major characteristics

• Model based PUS-C TC/TM stack developed using ASN.1/ACN modelling supported by ESA tool ASN1SCC

• Execution from internal Flash memory

• Self-test of the internal SRAM and external SDRAM memories

• Failure reporting through boot and death reports

• Bare metal design (no RTOS used)

• Utilizes a minimal set of BSP drivers developed in the project scope

• Supported PUS (1, 5, 6, 8, 17)

• Additional custom PUS 6 subservice for flash memory operations

2019

8

BSW architecture overview

9

BSW states overview

2019

10

ASN.1 data modelling

• ASN.1 – well established data modelling standard

• ACN – language for describing encoding rules,
created by ESA

• ESA TASTE toolchain used to generate
code and documentation

• Single source of truth – models ensure
consistency between documentation and code

• Models distributed as part of ICD (can be reused)

• PUS services data models reused from components library

2019

ASN.1/ACN
models

ICD
(HTML / PDF)

C code

SVFBSW

11

ASN.1 data modelling

2019

12

BSP and CANopen library

• Bare metal driver library with support for following peripherals

• Serial interfaces:

• Ethernet, I2C, SPI, CAN, UART, ISI, QSPI

• Other modules:

• SDRAMC, WDT, RSWDT, LPOW, NVIC, SYSTICK, XDMAC, TIC, PWM, RTC, RTT, PIO, AFEC, FPU, EEFC, PMC, RSTC, SUPC

• Integration of the selected drivers with the RTEMS 5

• CANopen library

• ECSS-E-ST-50-15C, clauses: 9 (Minimal implementation), 7 (Time distribution), 8 (Redundancy management)

• Master and slave modes

• PDO data transfer: unconfirmed command, telemetry request, SYNC

2019

• RTEMS clock Driver Shell (SysTick) • RTEMS RTC device (Timer)

• RTEMS TCP/IP Driver (Ethernet) • RTEMS I/O Manager (MCAN)

13

Tailoring of the CANopen library

• Implementation followed the following clauses of the ECSS-E-ST-50-15C standard:

• Clause 7 – Time distribution

• Clause 8 – Redundancy management

• Clause 9 – Minimal implementation of CANopen protocol for highly asymmetrical control
applications

• Main elements left out from the implementation:
• SDOs (Service Data Objects)

• Support for remote transmission request (RTR)

• Support for setting remote SCET time

• Implementation of an EDS-to-OD (Electronic Data Sheet to Object Dictionary) converter

2019

14

Testing & qualification approach

• Test environment

• Controlled by CI Jenkins server

• Unit tests implemented in open-source Cmocka

• Achieved >80% code and branch coverage

• Code coverage analysed with ported gcov

• Static analysis

• MISRA compliance with Cppcheck

• Code metrics with Lizard

• clang-tidy, clang-format

• Traceability matrixes generation based on Doxygen
comments

• Integration and validation supported by Python scripting
environment responsible for C&C communication

• PEAK dongle and CANfestival used for CANopen validation

• BSP integrated into Microchip web server demo

2019

15

CI test stages

2019

16

Static analysis

• Checks performed as part of build steps

• Validated on CI

• Zero tolerance (all warnings are errors)
• failing checks block next build steps

• Checks include:
• cppcheck – static analysis and MISRA rules verification

• clang-tidy – static analysis

• clang-format – code style conformance

• lizard – complexity analysis

• Project was early adopter of cppcheck MISRA addon
• A few bug fixes were submitted to cppcheck

2019

17

Test Suite Framework

• In-house built testing framework

• With core being platform-independent, framework was adapted for use with
ATSAMV71Q21

• Main features:
• Based on Python test scripts

• Easy integration with different hardware platforms and setups

• Automatic collection of debugger and application outputs

• Enables construction of platform-agnostic, portable test scenarios

2019

18

Test cases definition

• Allows instrumentalization
and inspection of communication
over the C&C link

• For the purpose of the ARMBSP
project, enables instrumentation
of various microprocessor
peripherals

2019

19

Test environment

2019

20

Test environment

• RaspberryPI used as an interface
to the ATSAM V71
• Remote IO control

• RaspberryPI configuration with ssh

• GDB Server host

• Environment for running binaries to
handle CAN bus and CANfestival

• Test Platform
• Interface to the RaspberryPI with

TSF (Test Suite Framework)

• Unit test log verification

• Several Test Suites to handle
integration testing

2019

21

• Cmocka unit test framework

• Each module has it’s own binary with test cases

• Checking done on the MCU with log sent using USART

• Verification of the results done by the Test Platform

2019

Unit testing

22

• Direct program execution control with python scripts.

• GDB interface

• C&C interface communication with UART

• CAN bus communication using CanFestival and basic CAN framework

2019

Testing performed by Test Suite Framework

23

CANopen performance measurement scenarios

• We performed test measurements of performance of the library in three
scenarios:

• Active waiting – transmit a single message or a 16-message burst and wait until the hardware
queue is empty before queuing more messages;

• Event-based transmission – transmit the messages upon reception of a system event
generated in the transmission interrupt handler;

• Active queue filling – variation of active waiting; poll the hardware queue status and transmit
the messages whenever there’s space in the queue.

• Measurements were performed with an RTEMS-based demo application, with the
processor clock running at 150MHz and bus baudrate of 1MBit/s

• Data reception performed by PEAK dongle and CANfestival controlled by RPi

2019

24

CANopen performance measurement results

• Performed by triggering 10000 queueing operations (giving 10000 messages for
single message transmissions and 160000 messages for bursts).

• With baudrate of 1Mbit/s, average user data rate is ~530kbit/s.

2019

Active waiting Event-based transmission
Active queue

filling
Single message

16-message
burst

Single message
16-message

burst

Data bandwidth
usage

69.4% 93.6% 62.9% 92.9% 95.79%

CPU load from
CANopen library

29.8% 34.7% 30.5% 33.2% 34.3%

25

GCOV/LCOV

• Adapted with coverage stubs

• Linked custom _read, _write, _open, _close etc. functions

• _write forwards the coverage data to the USART

• Standard gcc --coverage binary compilation.

• Output captured by the EGSE and saved to the files for
further analysis with GCOV/LCOV

2019

26

MC/DC coverage

• C language introduces “branching” in all complex conditions
(“short circuit” in && and ||)

• LCOV measures branch coverage using branches from assembly, not from C code

• In result branch coverage calculated by LCOV is almost equivalent to
modified condition/decision coverage

• Difference lays in “Boolean vectors” checks (including bit fields)

2019

27

Test summary

2019

BSP BSW CANopen

Line coverage
5730/6011

(95.3%)
6738/7052

(95.5%)
3999/4207

(95.1%)

Branch
coverage

1417/1686
(84%)

1439/1700
(84.3%)

1095/1290
(84.9%)

Unit test cases 476 682 385

Integration test
cases

39 62 12

• Code & branch coverage computed from unit tests execution

28

Conclusion and future

• Reusable software suite for Cortex-M7 processor line from Microchip

• BSW, BSP

• CANopen library

• Automatic test environment based on dev kit and
RaspberryPi ensuring external access to interfaces

• BSW was successfully integrated with Microchip
web server demo

• Future steps

• Ongoing adaptation of BSW and BSP to SAMRH71
and future ARM MCU

• Support for SpaceWire and IO Switch Matrix

• Remote application booting through SPI and RMAP

• Usage foreseen in future ICECube project for ISS

• Need for criticality B qualification

2019

29

Thank you for your attention

2019

Michał Mosdorf
mmosdorf@n7space.com

Michał Kocon
mkocon@n7space.com

+48 22 299 20 50
www.n7space.com

mailto:mmosdorf@n7space.com
mailto:mkocon@n7space.com
http://www.n7space.com/

