E N/ SPACE N

SFEPEHAECE ATMELARM BSP with CANopen library

Michat Mosdorf, Michat Kocon & The Team

Final Presentation Days 3-4 Dec 2019

Agenda

N7 Space introduction

* Project scope and objectives

Design and development aspects

Testing approach

e Conclusion and project continuation

SPARACE

SPARACE

N/ Space

e Joined venture between SPACEBEL and N7 Mobile
located Poland

Company founded in 2017

Started operation with projects previously executed by
N7 Mobile that were transferred to N7 Space

Software engineering team located in Warsaw office with
space experience since 2014

Focus on software development for upstream segment
e On-board software
* Leon3, Cortex-M7/, Zynq
* MBSE
* ASN.1, SDL, AADL, MSC, Capella, TASTE

JrACE

MOBILE

Selected activities

* ESA missions
* CBK’s subcontractor in PROBA3 mission responsible for on-board software

e SPACEBELs subcontractor in HERA mission ©OESA-P. Cari

» Software development for ARM ecosystem

* Board Support Package and Boot Loader development for Microchip
Cortex-M7 processor line

* CANopen library and RTEMS 5 demo applications
e CoreSight usage for multi-core software tracing on ARM Cortex-A53 Zynq

o T =
_ . 3

P
o onmame:
Ty

MICROCHIP

W™

SPACE 2019

SPARACE

Selected activities

Import ASN.1/ACN components

Select components you wish to import

 MBSE tools development S

Requires:
+ @ Common Types
v ST[01] request verification - Commop TYPE.S
| 1 1 + || ST[02] device access * Mission Objects
* Qt based IDE for ASN.1 modelling with PUS-C template library S
» [ST[04] parameter statistics reporting ~ PTC/PFC Types
4 ST[05] event reporting Basic Types

ST[06] memory management

e PUS-C deployment with automatic generation toolset =Rl i i

~ @ ST[09] time management
~ @ Time reporting subservice

* Database software, document generation ASN.1 modelling and

» [Time reporting control subservice Conflicts:

. 4 ST[11] time-based scheduling ~ ST[09] time management
ge n e rat | O n » ST[12] On-board monitoring - Time reporting subservice
v ST[13] large packet transfer Time reporting in CDS format

’ ST[14] real-time forwarding control
ST[15] en-board storage and retrieval

e Capella plugins development O

r ST[18] On-Board control procedure
’ ST[19] event-action
System Objects

* ASN.1 and AADL generator from Capella models) e
e Test scripting languages
* EBNF, Language Server Protocol Based IDE for ECSS languages

. Prov|(j|ng TASTE s.upport to target platform by integrating new - t —\)S t e
compiler toolchain ACN| >

* Member of TASTE Steering Committee
== Capella

2019

ARM BSP with CANopen library

* Project executed under ESA Polish Incentive Scheme with Microchip

* Software development activities for SAMV71 Cortex-M7 MCU
* Bootloader compliant with the ESA SAVOIR requirements
 Utilization of PUS-C stack supported by ASN.1/ACN formal modelling
e Board Support Package
e Driver library for MCU

* CANopen library implementing tailored ECSS-E-ST-50-15C

* Demonstration applications based on RTEMS 5

e Lifecycle and target TRL

* Project lifecycle and quality requirements based on tailored ECSS-E-ST-40C and Q

ECSS-Q-ST-80C MICROCHIP

e Target criticality C and TRL6

SPACE 2019

Bootloader Software

e Bootloader software for Cortex-M7 SAMV71

* Software requirements specification based on SAVOIR Flight Computer Initialisation Sequence Generic
Specification provided by ESA

* Major characteristics
* Model based PUS-C TC/TM stack developed using ASN.1/ACN modelling supported by ESA tool ASN1SCC
e Execution from internal Flash memory
e Self-test of the internal SRAM and external SDRAM memories
* Failure reporting through boot and death reports
* Bare metal design (no RTOS used)
» Utilizes a minimal set of BSP drivers developed in the project scope
* Supported PUS (1, 5, 6, 8, 17)
* Additional custom PUS 6 subservice for flash memory operations

SPARACE

BSW architecture overview

Flashinterface E SelfTest
(e SEENS
]
CalculateChecksum | <<subsystem>> SE”dPDCkEt I
pmm———— :"‘O— E Flashinterfack TimerTime —_O"‘T. “““ 1 !
: e M " : Timestamp B || TimerTime Bsp ReceivePacket | |
| oagMemory emoryManager —— ---4 e TimeManager e O—— ===y 1
L= b
P X H P
) \ | i I i |
ol | !) ! !
! I ! Timestamp ! 1 \
| 1]
: i | ' ! l
: I I ! i I
{ i i
b) ReceivePacket o i
i i i CalculateChecksum El Rec;iveTc ReceiveTc E‘ i : :
ISR 1 ___________________________D— - - __________'::O— —C _____________ a ! !
H 1 \] 1
i 1 |
! ! LoadMemory SendTm SendTm ! |
: ! <<subsystem>> s = <<subsystem>> i !
—————— | == mmmm e mmmmmmmmmmes /] - - ——mmm e
i PusManager T TcTminterface sendPacket I
! ChangeState BuildTm I BuildTm H i
| |] {
| > e o e Gt
| : L |
| 1
! | SendTm Bu |Iqu SelfTest |
| | A R s
| |
| ’ 0 k\j &\/ ﬁ/
I
: : UpdaLeCanigur%tion | Proce#spus
i ! .Quer',{State | ProcessPus EI BootAsw BootAsw E CalculateChecksum
| e — - (e 50— —(--
=4 ' ! 1 =
[| | { Verifylmage "
[i i 1 QueryState 24 Verifylmage
I i i] <<subsystem>> -
! I | b 2 —— —(————————————_.‘:'JO— AswlLoader
] ! ! StateManager
: i] ChangeState Copylmage Copylmage
I i — -
: - e O — (= -O—
: UpdateConfiguration
I
Loademor\r W GetCon'flguratlon
T
UpdateBootReport
[
GetCnnflgukatan Updateﬁootﬂepon

StartEm}cuﬂon [
Y/

ConfigurationVectorManager

|
E‘ ;\" ! : UpdateBootReport
——————————— i
I
I
: I
Bswinit UpdateBootReport : E
: | | BootReportWriter

SPARACE

BSW states overview

Power On

N ASW image error

R <Reset>>TC

Basic init completed

b4

& -

Crash d&tected?
No

v

&

. GPIO pinin triggering state?
0

<<Switch to Standby >> TC

Timeout

ASW Booting

ASW image loaded

I-.-h ASW launch
SPACE 2019

Self-Tests completed or skipped

3

ASN.1 data modelling

* ASN.1 — well established data modelling standard

 ACN —language for describing encoding rules, f %
created by ESA

ESA TASTE toolchain used to generate

code and documentation f %

Single source of truth — models ensure
consistency between documentation and code

Models distributed as part of ICD (can be reused)

PUS services data models reused from components library

ASNA t "‘; S t e
The Assert Set of Tools for Engineering

SPACE 2019

AUTOMATIC TAGS AS N] 1 d a ta Mo d e I I | N g

def loadMemoryWithData(s=1f, address, data):
tcload = aut.asn.TC_PUS_6_2 LoadMemoryabsolute()
e tcload.targetAddress.Set{address
TC-6-2-LoadRawMemor e ()

. e EEnT e B tcload.data.contents.Setlength{len(data))

MemoryData FROM

) _ for idx, datum in enumerate(data):

dataAreas TC-6 :
tcload.data.contents[idx].Set(datum)

self.sendTelecommand(tcload, ackExec=True)

self.expectTelemetry(expectedTmTypes=[aut.asn.TM _PUS 1 7 ExecSuccess], timecut=52)

const TC_6_2 LoadRawMemoryDatahAreas* const data = &(tc-rpacketDataField.data.u.tc_6_2);
uint8 t* const targetfddress = data-»datafreas.startfddress;

const uint8 t* const memoryContent = data-»dataAreas.dataToload.data.arr;

const size t datalength = (size_t)data->datafreas.dataToload.data.nCount;

adilawMemoryDataAreas (SEQUENCE) asid ach Min: 7 bytes Max: 1031 bytes

1 |n always | MULL LA a8 8

2 | dataAreas always | TC-6-2-Datafrea LA 43 3240

Min: 6 bytes Max: 1030 bytes

1 | startAddress always | BytePointer LA 32 32
2 | dataTolLoad always | MemoryData LA 16 2208

SPACE 2019

BSP and CANopen library

e Bare metal driver library with support for following peripherals

* Serial interfaces:
* Ethernet, I12C, SPI, CAN, UART, ISI, QSPI

e Other modules:
» SDRAMC, WDT, RSWDT, LPOW, NVIC, SYSTICK, XDMAC, TIC, PWM, RTC, RTT, PIO, AFEC, FPU, EEFC, PMC, RSTC, SUPC

* Integration of the selected drivers with the RTEMS 5
* RTEMS clock Driver Shell (SysTick) RTEMS RTC device (Timer)
 RTEMS TCP/IP Driver (Ethernet) RTEMS I/O Manager (MCAN)

* CANopen library
e ECSS-E-ST-50-15C, clauses: 9 (Minimal implementation), 7 (Time distribution), 8 (Redundancy management)

* Master and slave modes
e PDO data transfer: unconfirmed command, telemetry request, SYNC

SPARACE

Tailoring of the CANopen library

* Implementation followed the following clauses of the ECSS-E-ST-50-15C standard:
e Clause 7 —Time distribution
e Clause 8 — Redundancy management

e Clause 9 — Minimal implementation of CANopen protocol for highly asymmetrical control
applications

* Main elements left out from the implementation:
e SDOs (Service Data Objects)
e Support for remote transmission request (RTR)

» Support for setting remote SCET time
e Implementation of an EDS-to-OD (Electronic Data Sheet to Object Dictionary) converter

SPARACE

Testing & qualification approach

* Test environment

e Controlled by ClI Jenkins server

e Unit tests implemented in open-source Cmocka
* Achieved >80% code and branch coverage

* Code coverage analysed with ported gcov

e Static analysis
* MISRA compliance with Cppcheck
* Code metrics with Lizard

* clang-tidy, clang-format

* Traceability matrixes generation based on Doxygen

30I-NVS

comments ‘ e - /i ouws/

* Integration and validation supported by Python scripting
environment responsible for C&C communication

- PEAK dongle and CANfestival used for CANopen validation
* BSP integrated into Microchip web server demo

SPACE 2019

3

SPARACE

Cl test stages

Unit Tests
Start Prepare tests Build Unit Tests Coverage TSF Tests End

Build BSP Unit Test BSP Coverage BSP TSF Test BSP

Restart RPI Build BSW Unit Test BSW Coverage BSW TSF Test BSW

Build CANopen Unit Test Coverage TSF Test
CANopen CANopen CANopen
Build DEMO Unit Test Demo TSF Test Demo
2019

Static analysis

Checks performed as part of build steps
Validated on Cl

Zero tolerance (all warnings are errors)

 failing checks block next build steps

Checks include:
e cppcheck —static analysis and MISRA rules verification
* clang-tidy — static analysis
* clang-format — code style conformance
 |izard — complexity analysis

Project was early adopter of cppcheck MISRA addon

* Afew bug fixes were submitted to cppcheck

SPARACE

Test Suite Framework

* In-house built testing framework

* With core being platform-independent, framework was adapted for use with
ATSAMV71Q21

* Main features:
e Based on Python test scripts
e Easy integration with different hardware platforms and setups
* Automatic collection of debugger and application outputs
* Enables construction of platform-agnostic, portable test scenarios

SPARACE

Test cases definition

- test applicationRespondsToPusl7Request(sel
f.awaitIdleModeEntry()

f.pusInterface.sendTelecommand(

o Al I OWS I n St r u m e nta | | Zat I O n | aut.asn.TC_17 1 PerformAnAreYouAliveConnectionTest(), timeout=15)
1 1 1 1 f.pusInterface.expectTelemetry(
a n d I n S p e Ct l O n Of CO m m u n | Cat I O n expectedTmTypes=[aut.asn.TM_17_2_AreYouAliveConnectionTestReport], timeout=15)
over the C&C link

.sleep(self.REMOTE_PIN_SETTING DELAY)
F.executeAnArmockaCommand(“di
.flushUartBuffers()

F.egse.setEgsePin(self.PIO_OUT_PIN, high=True
.sleep(self.REMOTE_PIN SETTING DELAY)
F.egse.setEgsePin(self.PIO_OUT_PIN, high=Fal
.sleep(self.REMOTE_PIN SETTING DELAY)

* For the purpose of the ARMBSP
project, enables instrumentation
of various microprocessor
peripherals in.leep (s RO PN ST OELR)

F.egse.setEgsePin(self.PIO_OUT_PIN, high=Fal
.sleep(self.REMOTE_PIN SETTING DELAY)

response = f.executeAnArmockaCommand ("' rea
self.ensureArmockaProgramRespondsWithString(self.STATUS_HIGH STRING, response)

SPACE 2019

3

SPARACE

Test environment

d <dl—Ethernet—p

(Jenkins)

Camera | '
OV7675 | I

f

Jlink
SAM-ICE

FTDI UM201XA

2019

RaspberryPI

f

UART
FTDI FT232R

ATSAM V71
Xplained Ultra

§

CAN
Peak-System

pcan-ush

USB/USART

Test environment

» RaspberryPl used as an interface RaspberryPl Test Platform
to the ATSAM V71
e Remote IO control
* RaspberryPl configuration with ssh
e GDB Server host

* Environment for running binaries to
handle CAN bus and CANfestival

e Test Platform

* Interface to the RaspberryPIl with
TSF (Test Suite Framework)

e Unit test log verification

e Several Test Suites to handle
integration testing

VM

CAN/CANfestival

handle binary
Test Suites Test cases

GDB Server g

Unit test loader
and
log verification script

10 interfaces

i

3

SPACE 2019

Unit testing

* Cmocka unit test framework
e Each module has it’'s own binary with test cases
e Checking done on the MCU with log sent using USART

 Verification of the results done by the Test Platform

Unit test
binary

ATSAM V71 Unit test/coverage
- —P»| Test Platf
Xplained Ultra m RaspberryPI log est Platform

2019

3

SPARACE

Testing performed by Test Suite Framework

* Direct program execution control with python scripts.
* GDB interface
e C&Cinterface communication with UART
* CAN bus communication using CanFestival and basic CAN framework

Tested
program

Other Interfaces

ATSAM V71
Xplained Ultra m REL o] o83V L NIl -<—RaspberryPl Control—B»| Test Platform

SPACE 2019

3

SPARACE

CANopen performance measurement scenarios

* We performed test measurements of performance of the library in three
scenarios:

* Active waiting — transmit a single message or a 16-message burst and wait until the hardware
queue is empty before queuing more messages;

e Event-based transmission —transmit the messages upon reception of a system event
generated in the transmission interrupt handler;

* Active queue filling — variation of active waiting; poll the hardware queue status and transmit
the messages whenever there’s space in the queue.

* Measurements were performed with an RTEMS-based demo application, with the
processor clock running at 150MHz and bus baudrate of 1MBit/s

* Data reception performed by PEAK dongle and CANfestival controlled by RPi

3

SPARACE

CANopen performance measurement results

* Performed by triggering 10000 queueing operations (giving 10000 messages for
single message transmissions and 160000 messages for bursts).

» With baudrate of 1Mbit/s, average user data rate is ~530kbit/s.

Active waiting Event-based transmission
Active queue

16-message filling

burst

16-message

Single message
& & burst

Single message

Data bandwidth
usage

69.4% 93.6% 62.9% 92.9% 95.79%

CPU load from

0, 0, 0, 0, 0,
CANopen library 2k 34.7% 30.5% 33.2% 34.3%

2019

- performing unit tes 1"
IT TEST RESLLT - B
sulte name="WdtTe: ‘I'i|||--—" 0, 00c
name="Fpu_hasCorrectFe:

GCOV/LCOV s

ctlyHandlesFlushToZero" time="0

ctlyDetectsErrors' time='0
Adapted with coverage stubs
e Linked custom _read, write, open, close etc. functions
e _write forwards the coverage data to the USART
Standard gcc --coverage binary compilation.

Output captured by the EGSE and saved to the files for
further analysis with GCOV/LCOV

LCOV - code coverage report
Current view: top level Hit Total Coverage
Test: unnamed Lines: 5730 6011 95.3 %
Date: 2019-11-15 00:17:50 Functions: 628 657 95.6 %
Branches: 1417 1686 84.0 %
mlm
src/Afec 97.8% 308/315 96.8% 30/31 88.5 % 77187
src/Eefc I:I 89.0% 195/219 824°% 28/34 82.9 % 68 /82
src/Fpu 1 88.2% 127/144 846% 11/13 100.0% 2/2
src/Gmac [1 967% 555/574 981% 51/52 80.6% 100/124
src/Isi 1 927% 332/358 935% 29/31 824 % 75791
src/Lpow T 100.0 % 15/15 100.0 % 3/3 - 0/0

SPACE 2019

MC/DC coverage

e Clanguage introduces “branching” in all complex conditions
(“short circuit” in & and | |)

LCOV measures branch coverage using branches from assembly, not from C code

In result branch coverage calculated by LCOV is almost equivalent to
modified condition/decision coverage

Difference lays in “Boolean vectors” checks (including bit fields)

if (MemoryManager isBusy(memoryManager))

return returnkError (errxrCode, MemcryManage:_Er:c:Ccde_Busy):
if (!'isAligned(destination) || !isAligned(source))

return returnError (errCode, MemoryManager ErrorCode MemoryNotAligned):
if (size > MemcryManager_BlockHax51ze)

return returnError (errCode, MemoryManager ErrorCode BlockTooBig):

NN WD
“e we se ae ws e

SPACE 2019

Test summary

e Code & branch coverage computed from unit tests execution

Line coverage 5730/6011 6738/7052 3999/4207
& (95.3%) (95.5%) (95.1%)
Branch 1417/1686 1439/1700 1095/1290
coverage (84%) (84.3%) (84.9%)
Unit test cases 476 682 385
Integration test 39 62 12

cases

3

2019

SPARACE

Conclusion and future

Reusable software suite for Cortex-M7 processor line from Microchip
« BSW, BSP
* CANopen library

Automatic test environment based on dev kit and
RaspberryPi ensuring external access to interfaces

e BSW was successfully integrated with Microchip il =
web server demo } | = . §

* Future steps

* Ongoing adaptation of BSW and BSP to SAMRH71
and future ARM MCU
* Support for SpaceWire and 10 Switch Matrix
* Remote application booting through SPl and RMAP

* Usage foreseen in future ICECube project for ISS

* Need for criticality B qualification

SPACE 2019

Thank you for your attention

Michat Mosdorf
mmosdorf@n7space.com

SPHLCE Michat Kocon
mkocon@n7space.com

+48 22 299 20 50
www.n7space.com

SPACE 2019

mailto:mmosdorf@n7space.com
mailto:mkocon@n7space.com
http://www.n7space.com/

