

Time-series SEP simulations and complications

<u>Àngels Aran¹,</u> P. Jiggens², S. Aminalragia-Giamini³, I. Sandberg³

¹Dep. Física Quàntica i Astrofísica, Institut de Ciències del Cosmos, Universitat de Barcelona, Barcelona ²European Space Research and Technology Centre, ESA, Noordwijk ³SPARC, Athens

IRENE Workshop, Sikya, Peloponnese, 30th May 2019

1. Motivation

2

Why splitting particle events like this one?

Variation of intensities with the heliocentric radial distance, R

a) Most of the SEP event data is measured at 1 AU

b) Space Agencies send missions to the inner heliosphere

c) Current radiation standard environment models may overestimate the SEP fluence by assuming an R⁻² dependence

 d) The contribution of interplanetary shocks in accelerating particles while travelling into the heliosphere needs to be taken into account

Gradual events modelling -

Individual SEP events

The statistical model tool for interplanetary missions (Away-from-1AU modelling) of the **ESA SEPEM** Project (Crosby et al. 2015) uses outputs from the **SOLar Particle ENgineering COde 2 (SOLPENCO2)** tool.

A series of events

6

Fluence radial dependence

Challenge – Time series radial dependence, simple case

From Lario et al. (2007)

Difficulties - Time series Virtual Events

UNIVERSITAT DE

BARCELONA

Difficulties - Time series Virtual Events

UNIVERSITAT DE BARCELONA

Thanks for your attention!