Single chip dc-dc controller with high voltage input Primary

Authors: Nico De Clercq2, Gerd Beeckman2, Jerome Eekman1, Marc Fossion2
Co-authors: Jef Thone2, Mike Wens2, Richard Jansen3, Arturo Fernandez3

1 Thales Alenia Space in Belgium, Charleroi / Leuven, Belgium
2 MinDCet NV, Researchpark Haasrode, 3001 Leuven, Belgium
3 ESA @ ESTEC Noordwijk, Netherlands

AMICSA 2021 - 8th International Analogue and Mixed-Signal Integrated Circuits for Space Applications
25-28th May
TABLE OF CONTENTS

1. PWM
2. Base technology
3. IC design challenges
4. Measurements results
5. Conclusion & next steps
6. Acknowledgments
HIGH SPEED CONTROLLER (HSC)

a lot more than a “PWM controller” ➔ Swiss knife for dc-dc designer

Several Band gap voltage reference: segregation regulation & protection

Protections:
- OVER-VOLTAGE & UNDER-VOLTAGE
- OVER-CURRENT
- OVER-TEMPERATURE: 2X EXTERNAL & 1 INTERNAL

HF signals to cross galvanic barrier
- OPTO-COUPLERS ➔ 20MHZ ULTRA COMPACT TRANSFORMERS
- 2X ALARMS + 1X PWM

RC Oscillator + ext. Sync input

VCO ➔ LLC variable Switching freq. converter

Soft Start

Bus undervoltage lock out (UVLO)

Auto-restart with HICCUP / TC on & TC off control.

Power requirement ~20mA / 5V

No need for additional active control / monitoring devices whatever the dc-dc type.
HIGH SPEED CONTROLLER (HSC)

High voltage features ...

/// High voltage transistors used & managed such as to be tolerant to radiations

⇒ Nothing (no discrete semiconductor) else required in dc-dc design than power devices

OK for power diodes & transistors, Mosfet or GaN

/// Connection to Vbus

⇒ continuous operation on +100V bus with ripple & 33% transients ie. >135V peak

/// High voltage drop / low current linear regulator to enable supply of ...

- Startup of the dc-dc
- Holding of the On/Off status of the dc-dc
- Bus under-voltage protection & over T° protection

/// Current sensing on a shunt in the hot Vbus line

- Double differential amplifier with very high common mode.

Date: 26/05/2021
Ref: HSC-RUN2-TASB-XR-0103 rev1.0
Template: 83230347-DOC-TAS-EN-010

Thales Alenia Space Limited Distribution

Proprietary Information
This document is not to be reproduced, modified, adapted, published, translated in any material form in whole or in part nor disclosed to any third party without the prior written permission of Thales Alenia Space.
© 2021 Thales Alenia Space All right reserved

Thales Alenia Space
HIGH SPEED CONTROLLER (HSC)

Half-bridge GaN ➔ new dc-dc topologies & higher speed

Capable to control complex topologies
- PHASE SHIFTED FULL BRIDGE
- SMART: ZVS BUCK + ZVS PUSH-PULL
- LLC: HALF BRIDGE OR FULL BRIDGE

Ready for 1MHz switching ➔ GaN HEMT technology
- ON CHIP OSCILLATOR
- HIGH BW CURRENT SENSING AMPLIFIER
- HIGH SPEED PWM COMPARATOR
- CURRENT LEADING EDGE BLANKING FUNCTION

Multiple regulation/control schemes
- CURRENT AVERAGE MODE
- CURRENT PEAK MODE + SLOPE COMPENSATION & EDGE BLANKING
- NEW PVCC PEAK & VALLEY CURRENT CONTROL
PRODUCT CONSTRUCTION ROADMAP

Return of experience from 20 years TAS-be dc-dc designs included

/// HSC-run1: Functionnal validation in real dc-dc applications
Characterization over T° / dose & heavy ions

/// HSC-run2: bug fixes + new feature = PVCC

© 2021 Thales Alenia Space All right reserved
SEGREGATION

Regulation & protection may not share an element potentially leading to simultaneous failure

/// Regulation
/// Band-gap
/// OSC + PWM
/// Current sense

Physical rupture of the mono-crystalline wafer due to defect or crack at edges during dicing.

Physical split: 1/3 left & 2/3 right
Each side → bandgap
2. Current Control Loops

ACC

Average Current Control [2]

- Much used on spacecraft PF with symmetrical sawtooth

PCC

Peak Current Control [1]

- Sawtooth called compensation ramp
- Much used for terrestrial applications

PEAK & VALLEY CURRENT CONTROL SCHEME

Higher closed loop BW ~2x

Average current control with single sawtooth & single comparator

- limited loop gain (stability)
- limited closed loop BW

New implementation requires 2 sawtooth & 2 comparators + set / reset logic

- loop gain increase without stability issues

Fig. 9. Symmetrical sawtooth or upper and lower compensation ramps

Average Current Control with Symmetrical Sawtooth or Peak and Valley Current Control
Christophe Delepaut & Hadrien Carbonnier ESTEC, ESA
ONGOING & FUTURE WORK

Formal performance verifications engaged

/// First electrical functional test completed:

/// ~1000 BGA packages expected in June

/// Electrical detailed characterization

/// Development of automated recurrent production test means

/// ESD & Radiation (dose + heavy ion) tests

/// 1st batch Qualification according to ESCC-Q60-13C
ACKNOWLEDGMENTS

Project = High Speed integrated analog dc-dc Controller for space applications = HSC-run2

ESA Contract No. 4000126321/19/NL/AF

“Integrated power switch ASIC for small dc-dc converters”

Project = High Voltage Silicon for Radiation Hardened applications = HV-Si-Rad