

Ernesto Pun García Senior Microelectronics Expert

Research on ADC Architectures Suitable for Space Applications and Technology Scaling

8th International Workshop on Analogue and Mixed-Signal Integrated Circuits for Space Applications

(AMICSA 2021)

Wednesday 26 May 2021

15:25 – 15:45

Introduction

ADC features

Radiation hardening

Project status

Conclusions

About our company: ARQUIMEA

We believe in technology as a driver for social development and progress.

Our continuous activity in R&D&i allows us to create solutions and innovative products based on our technologies for highly demanding sectors where we operate. ARQUIMEA is a crosssectoral international technology company

Other project participants:

Research rationale

- Analogue-to-Digital Converters are key components in space applications.
- Limited number of alternatives within the same frequency range.
- Explore the suitability of $\Delta\Sigma$ ADC architectures in the MF/HF bands.
- Consider an $\Delta\Sigma$ ADC architecture suitable for its migration to ultra-deep submicron technologies.
- Implementation in a Europe-based foundry (IHP).

Technology

- SG13 technology family:
 - 130 nm bulk SiGe BiCMOS process
 - SiGe npn-HBTs with $f_T/f_{max} = 250/300 \text{ GHz}$
- Relevant technological features:
 - dual gate oxide
 - Inter-device isolation: STI and n-buried layer
 - no RHBP

- SG13RH design kit:
 - Libraries of rad-hard devices
 - RHBD techniques to the SG13S commercial process
- Relevant PDK features:
 - parametric cells for 3.3V ELT
 - flip-flops that are SEL-free, SEU-tested and SEUfree up to 67 MeV·cm²/mg

Reference:

[1] M. Krstic, J. Schmidt, A. Breitenreiter, F. Teply und R. Sorge, Evaluierung einer strahlungsharten Bibliothek in 0.13 µm BiCMOS, DLR Bauteilekonferenz 2018.

Target performance and applications

Target performance:

- Nyquist sampling frequency: 15 MHz
- ENOB: 13
- Power consumption of the analogue core \leq 7 mW
- Power consumption of the digital core \leq 36 mW

Applications:

• Telemetry, tracking and control (TT&C).

- No degradation due to TID up to 500 krad(Si).
- No SEL below 67 MeV·cm²/mg.
- No SEU below 67 MeV·cm²/mg.
- No SET (seen at the output) below 20 MeV·cm²/mg.

- IP-core to be integrated in a:
 - Microcontroller
 - System on Chip (SoC)

Architecture

- Digitally assisted MASH 1-1 $\Delta\Sigma$ ADC, considering:
 - Its later use in space applications
 - Future migration to smaller nodes
- Selection rationale:
 - Oversampling as a multi-vote spread in time [2].
 - Low order loops to avoid instability triggered by a SET [3].
- Design details:
 - Time-to-digital conversion technique based on DLL.
 - gm-C based integrators taking advantage of the fast HBT.

References:

 ^[2] L. Anghel, D. Alexandrescu, and M. Nicolaidis. Evaluation of a soft error tolerance technique based on time and/or space redundancy. In Proceedings - 13th Symposium on Integrated Circuits and Systems Design, 2000.
 [3] Daniel Malagon Perianez, José Manuel de la Rosa, Rocío del Río, and Gildas Leger. Single Event Transients trigger instability in Sigma-Delta Modulators. DCIS), Madrid (Spain), Nov. 2014.

Introduction	ADC features	Radiation hardening	Project status	Conclusions

State of the art

ADC	$f_{\sf s,Nyquist}$	ENOB / res.	INL	DNL	Power	Supply	Arob	TID	SEL	SEU
	MHz	Bits	±LSB		mW	V	Arch.	krad(Si)	MeV.cm ² /mg	
RHFAD128	1	11.7 / 12	1.1	0.9	6	3.6	SAR	300	125	32
ADC128S102 QML-SP	1	11.7 / 12	0.6	0.5	2.3	3	SAR	100	121.8	5.8
ISL7314SEH	1	13.3 / 14	0.5	0.2	60	5	SAR	75	86	86
UT14AD03	3	12.9 / 14	2	1	100	5	pipeline	300	111	-
9240LP	10	12.2 / 14	2.5	0.7	230	5	pipeline	100	> 120	-
VASP	12	< 12 / 14	2	0.5	275	3.3	pipeline	100	67.7	-
This work (specifications)	15	13 / 14	1	0.5	43	1.2	ΔΣ	500	> 67	> 67

References:

[4] E. Pun-García, M. López-Vallejo. A Survey of Analog-to-Digital Converters for Operation under Radiation Environments. MDPI Electronics 2020, 9(10), 1694; 15 October 2020. DOI: 10.3390/electronics9101694

Introduction

ADC features

Radiation hardening

Project status

Conclusions

Hardening strategy

- 2 RHBD attempts (1 accomplished, 1 ongoing).
- 2 test campaigns:
 - Test campaign 1 (accomplished):
 - Temperature range [-40, 125] °C
 - TID up to 500 krad(Si).
 - Test campaign 2 (planned):
 - Temperature range [-55, 125] °C
 - TID up to 500 krad(Si)
 - Heavy ions up to LET 67 MeV·cm²/mg (at least).

Introduction

ADC features

Radiation hardening

Project status

Conclusions

Analog core hardening (1/2)

- RHBD strategy for AMS circuit design [5-9]:
 - Use high density well contacts, especially in isolated nMOS transistors.
 - Isolate transistors located in the same well (but in different branches) with guard-bands. However, this recommendation could be skipped to take advantage of the pulse quenching effect.
 - Interdigitate dummy drain contacts in multi-finger transistors operating close to their saturation drainsource voltage. Again, this recommendation could be skipped to take advantage of the pulse quenching effect.

- · Avoid thick gate oxide transistors.
- Avoid nMOS transistors operating in weak inversion.
- Avoid nMOS transistors in high-performance switches.
- Avoid narrow nMOS transistors: WNMOS ≥ 1 µm. In case that narrow nMOS transistors could not be avoided, separate the STI from their channel at least 0.45 µm.
- Avoid deep n-wells below p-wells (whenever possible).
- Use deep n-wells below n-wells.

References:

[5] P. Roche, J. L. Autran, G. Gasiot, and D. Munteanu. Technology downscaling worsening radiation effects in bulk: SOI to the rescue. In Technical Digest - International Electron Devices Meeting, IEDM, 2013.
[6] Oluwole A., *et al.*. Charge collection and charge sharing in a 130 nm CMOS technology. In IEEE Transactions on Nuclear Science, volume 53, pages 3253-3258, dec 2006.
[7] David G. Mavis and Paul H. Eaton. SEU and set modeling and mitigation in deep submicron technologies. In Annual Proceedings - Reliability Physics (Symposium), pages 293-305, 2007.
[8] Balaji Narasimham, *et al.*. Characterization of digital single event transient pulse-widths in 130-nm and 90-nm CMOS technologies. In IEEE Transactions on Nuclear Science, volume 54, pages 2506-2511, Dec 2007.
[9] R. Sorge, *et al.*. JICG CMOS transistors for reduction of total ionizing dose and single event effects in a 130 nm bulk SiGe BiCMOS technology. Nuclear Instruments and Methods in Physics Research, Jan 2021.

Analog core hardening (2/2)

- Previous strategy tailored for each AMS block.
- Sensitive nodes to SET identified by simulation
 - Classic approach of a double-exponential current injection in the surveyed node
 - Charge collection depth (after an ionizing particle strike) estimated with a safety margin (cf. table).

Simulated collected charge for different ionizing particle's LET

LET (MeV·cm²/mg)	Q (fC)			
5	100			
10	200			
20	400			
30	600			

ADC features

Radiation hardening

Project status

Conclusions

Digital core hardening

- Traditional RTL-to-GDS digital design flow + hardening measures:
 - At Gate-Level-Synthesis using:
 - Unhardened standard cell library
 - Robust RHBD-TMR flip-flops [10]
 - Transient filters (guard-gate buffer cells with a delay-chain-guard-gate configuration)
 - At Place and Route
- No hardening by redundancy at HDL level.
- Additional test vehicles (reg0-reg2) for future low-power applications.

Digital core's modular distribution

References:

[10] V. Petrovic, M. Krstic, "Design Flow for Rad-Hard TMR Flip-Flops," In Proc. IEEE International Symposium on Digital Design of Electronic Circuits and Systems (DDECS), 2015.
 [11] Schrape, O.; Andjelkovic, M.; Breitenreiter, A.; Balashov, A. & Krstic, M. Design Concept for Radiation-Hardening of Triple Modular Redundancy TSPC Flip-Flops. In DSD, 2020.
 [12] Naseer, R., Draper, J. The DF-dice storage element for immunity to soft errors, 48th Midwest Symposium on Circuits and Systems, 2005.

Project status

- 1 manufacturing run accomplished (2 in total).
- 1 test campaign (temperature+TID) accomplished (2 in total):
 - No degradation observed up to 500 krad(Si).
 - Expected behavior at room temperature and 125°C.
 - The second test campaign will include characterization under heavy ions at least up to 67 MeV·cm²/mg.
 - Heavy ions tests of the prototype were replaced with additional charge injection simulations.

Prototype's die microphotograph

Conclusions

- Novel $\Delta\Sigma$ ADC architecture for operation in the MF/HF bands is presented:
 - Implemented in a commercial 130 nm bulk SiGe BiCMOS technology
 - Targeting TT&C applications
- Suitable for:
 - Integration in a microcontroller or a more complex SoC (reduced dimensions: ~1.2 x ~1.2 mm²)
 - Future migration to smaller nodes (time-to-digital conversion approach)

Thank you for your attention!

Any questions?

Ernesto Pun García

epun@arquimea.com