

Ernesto Pun García Senior Microelectronics Expert

Update on the Development of the Rad-Hard TM/TC MS-ASIC

8th International Workshop on Analogue and Mixed-Signal Integrated Circuits for Space Applications (AMICSA 2021)

> Thursday 27 May 2021 17:20 – 17:40

About our company: ARQUIMEA AEROSPACE & DEFENCE

Development rationale

- Single chip solution that integrates many electrical and electronic components used on spacecraft subsystems (such as RTU/RIU or ICU).
- Area and weight reduction of the PCBs implementing spacecraft sub-systems.

• Cheaper, lighter, and more compact spacecrafts (as required in reduced-size satellite fleets).

Technology

- Process: UMC L180 MM/RF 1.8/3.3V 1P6M p-sub/twin-well CMOS
- DARE180U libraries v5.7
 - Enhanced with 10 additional cells (OUT3VTRCS4/8/12/16/24 and OUT3VTRCSRCS4/8/12/16/24) in the frame of the project.
- IP-cores:
 - ΔΣ modulator designed from MF Cosmic Vision ESA Project (4000101556/10/NL/AF).
 - Other IP-cores (bandgap reference and LDO regulators, from the same ESA project) were enhanced.

Introduction

System description

Target applications

Project status

Conclusions

Main features

- Communication and configurations:
 - Redundant SPI [10; 20] MHz
 - Different addresses for readable & writable configurations
 - Broadcast mode
- Telemetries:
 - Up to 27/54 differential/single-ended telemetries converted to the digital domain
 - Configurable acquisition sequence / continuous mode
 - Current bias capability (for single-ended telemetries): 10 μA / 100 μA / 1 mA
 - Signal bandwidth: 50 kHz
 - 11 ENOB (worst case with high-resolution configuration)

- Cold-spare operation
- Telecommands:
 - Up to 4 simultaneous telecommands
 - Bi-level, Pulse and PWM operating modes
 - Configurable time references (phase shift)
 - Possibility of autonomous operation:
 - Configurable associated telemetry
 - Two threshold levels for hysteretic monitoring
 - Configurable active polarity
- Status:
 - One status bit per telemetry
 - Two threshold levels for hysteretic monitoring

Introduction

System description

Target applications

Project status

Conclusions

Other on-chip features

- Calibration:
 - Gain and offset of the *analog signal path* using two channels (disabled by default).
 - Temperature dependent gain and offset of the *internal voltage reference*.
- High-voltage signal range:
 - On-chip common-mode control (CMC)
 - Single-ended: [-1; 11] V
 - Differential: [-10; 10] V_{dpp} / [-1; 1] V_{CM}
- Over-current alarms:
 - In LDO regulators (for core supply).
 - Cyclic / Permanent.

- Configurable latency:
 - Discarded modulator samples after a channel switch.
 - Number of stages used in the digital filter.
- DFT:
 - Scan chains x4
 - Redundant analog test bus
- Reduced number of IO ports:
 - Custom CQFP-100
 - Test ports shared with functional ports
 - Double bonding for 3.3V supply ports

External passive network for the CMC

Analog test bus

Block diagram

Introduction

System description

Target applications

Project status

Conclusions

Block diagram

Analogue Core blocks:

B1 – LDO ANA generates the 1.8V analogue core supply from the 3.3V external supply.

B3 – LDO DIG generates the 1.8V digital core supply from the 3.3V external supply.

B4 – SENSOR BIASING provides the bias capability of the telemetry channels.

B6.1 – MUX selects the telemetry channels to be acquired.

B6.2 – SIGNAL CONDITIONNING fits the signal coming from the telemetry channels for the $\Delta\Sigma$ modulator input.

B6.3 – LSSB ($\Delta\Sigma$ modulator) is the first stage of the digital conversion of the acquired telemetry.

B8.1 – V REF generates the internal voltage references for the $\Delta\Sigma$ modulator. **B8.2 – I REF** generates the internal current references for the rest of the analogue core blocks.

B9.1 – MAIN REF provides a stable voltage reference for other blocks of the analogue core. This reference can be provided either by the internal bandgap reference or externally.

B9.2 – INT REF generates the bias voltage for external attenuators based on resistive networks.

B20 – ATB collects critical signals from the analog core for external monitoring.

Digital Core blocks:

B6.4 – DIGITAL FILTER filters and decimates the 1-bit output of the $\Delta\Sigma$ modulator to obtain the final resolution.

B6.5 – SAMPLES AVERAGING

B6.6 – OUTPUT DATA BUFFER records the acquired telemetries

B7 – STATUS COMPARATOR compares the acquired telemetries with a registered threshold level.

B10 – V SUPERVISOR is a window comparator (acquired telemetry versus registered threshold levels) implemented digitally.

B11 – RESET MANAGEMENT generates the internal reset signal for TM/TC MS-ASIC.

- B12 REFERENCE REG is a register bank. It records the threshold levels.
- B13 PWM GEN implement the PWM functionality of telecommands.

B14 – STA REG is a register bank. It stores the status of TM/TC MS-ASIC.

B15 – ADC REG is a register bank. It stores the configurations for the digital conversions of the telemetries.

B16 – ADC TIMING CONTROLLER manages the timing configurations of the digital conversions of the telemetries.

B17 – MISC REG is a register bank. It stores additional registers not considered in the other register banks.

B18 – SPI/SSB implements the communication interfaces.

B19 – COMMAND drives the telecommands using the information stored in other blocks. **B22 – DTB** is the digital test bus.

A preliminary validation of 30 EM chips with a standard CQFP-100 package is about o begin:

- Temperature range: [-55; 125] °C
- TID: up to 150 krad(Si)
- LET: up to 75 MeV·cm²/mg

- → Expected: No performance degradation in the full range.
- → Expected: No performance degradation at least up to 50 krad(Si).
- → Expected: No SEL up to 75 MeV·cm²/mg, No SEU, SEFI, SEB or SEGR up to 37 MeV·cm²/mg.

Conclusions

- Final features of the TM/TC MS-ASIC:
 - Custom CQFP-100
 - SPI
 - Telemetries
 - Telecommands
 - Status
 - Calibration
 - High-voltage signal range
 - Over-current alarms
 - Configurable latency
 - DFT
 - Reduced number of IO ports

- Target applications:
 - RIU/RTU
 - ICU

- Usage benefits:
 - Weight, volume and price reduction.
 - Suitable for reduced-size satellite fleets.

Thank you for your attention!

Any questions?

Ernesto Pun García

epun@arquimea.com