Geant4 Tools in SPENVIS

>>

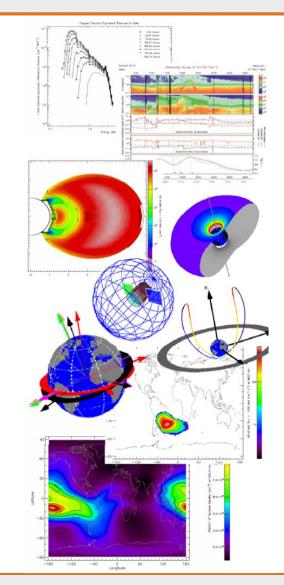
A User Perspective

Neophytos Messios

(K

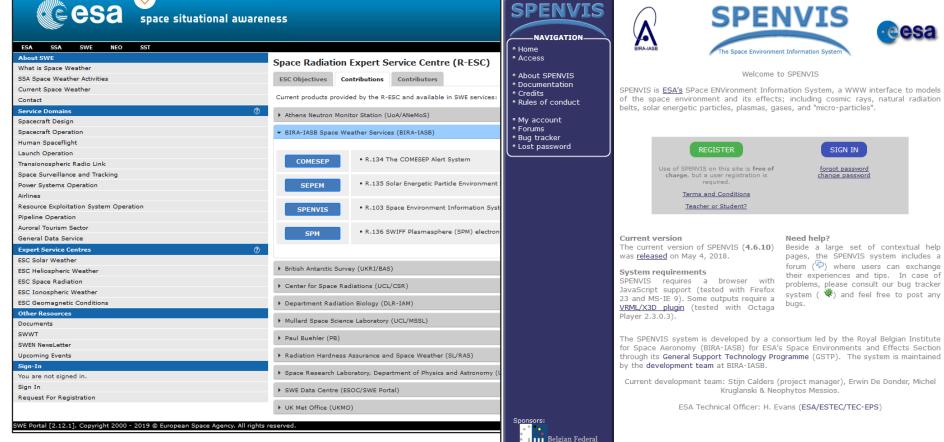
14th Geant4 Space Users' Workshop Xylokastro, Greece, 22 October 2019

ROYAL BELGIAN INSTITUTE FOR SPACE AERONOMY


Outline

□ A brief introduction to SPENVIS Geant4 tools in the SPENVIS system SPENVIS users & Geant4 tools ✓ Profile & needs ✓ User support ✓ Commonly asked questions & feedback Selected examples Current status and future plans

The ESA's SPENVIS system


- Operational software with large user community
- Web interface to models of the space environment & its effects
- Developed & maintained by BIRA-IASB since 1996
- Publicly available since 1998

How to access SPENVIS

Science Policy

https://www.spenvis.oma.be

http://swe.ssa.esa.int

S

Copyright 1997-2018 © ESA - Operated by Belgian Institute for Space Aeronomy

SIGN IN

forgot password

change password

SPENVIS Next Generation

- Complete re-design of the SPENVIS system developed in the frame of ESA's GSTP
 - ✓ Web-based service oriented framework
 - ✓ Modular architecture allowing distributed deployment
 - ✓ Plug-in of models
 - ✓ Machine-to-machine interface
- Project ended in December 2018

Geant4 tools in SPENVIS

- Easy to use interface
- Interaction with other SPENVIS models & tools
- Macro files can be used outside SPENVIS

Coordinate generators
Radiation sources and effects
Spacecraft charging
Atmosphere and ionosphere
Magnetic field
Meteoroids and debris
Miscellaneous
Geant4 Tools
General models
Multi-Layered Shielding Simulation (Mulassis)
Geant4 Radiation Analysis for Space (GRAS)
Geant4-based Microdosimetry Analysis Tool (GEMAT)
Sector Shielding Analysis Tool (SSAT)
Planet specific models
<u>Magnetocosmics</u>
<u>Planetocosmics</u>
Common settings
Definition of source particles
Definition of physics models
<u>User defined materials</u>
Geometry definition tool

ECSS Space Environment Standard

Geant4 tools in SPENVIS

Tool name	Tool version	Geant4 version	Description
GRAS	4.0 3.1	4.10.1p3 4.9.5p02	The Geant4 Radiation Analysis for Space tool performs general space radiation studies for complex 3D geometry models
MULASSIS	1.26 1.23	4.10.1p3 4.9.5p02	The Multi-Layered Shielding Simulation Software can simulate the particle transport in one-dimensional planar or spherical shields
GEMAT	2.8	4.9.5p02	The Geant4 Microdosimetry Analysis Tool can be used to study dosimetry effects of space radiation on micro-electronics and micro-sensors
SSAT	2.1	4.9.0	The Sector Shielding Analysis Tool Ray determines shielding levels and shielding distributions from a user defined point within a given geometry

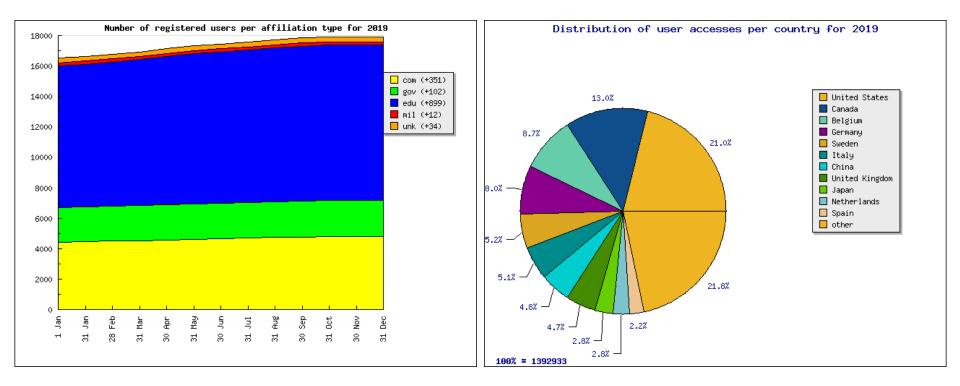
Geant4 tools in SPENVIS

Tool name	Tool version	Geant4 version	Description
MAGNETOCOSMICS	2.0	4.7.1	Computes cut-off rigidities as a function of position for different types of magnetic field models for Earth. Also, visualises charged particle trajectories and magnetic field lines
PLANETOCOSMICS	2.0	4.8.1	Allows the definition of a planetary magnetic field, atmosphere & soil and it simulates the interactions of energetic particles with the planetary environment
PLANETOCOSMICS-J	-	4.9.2p02	Update of version 2.0 of the PLANETOCOSMICS code for simulating the Galilean Moon (Io, Europa, Ganymede & Callisto) radiation environment
dMEREM	-	4.9.1p03	Detailed Mars Energetic Radiation Environment Model for simulating interactions of e.g. GCRs and SEP with Martian atmosphere and soil

Geant4 supporting tools

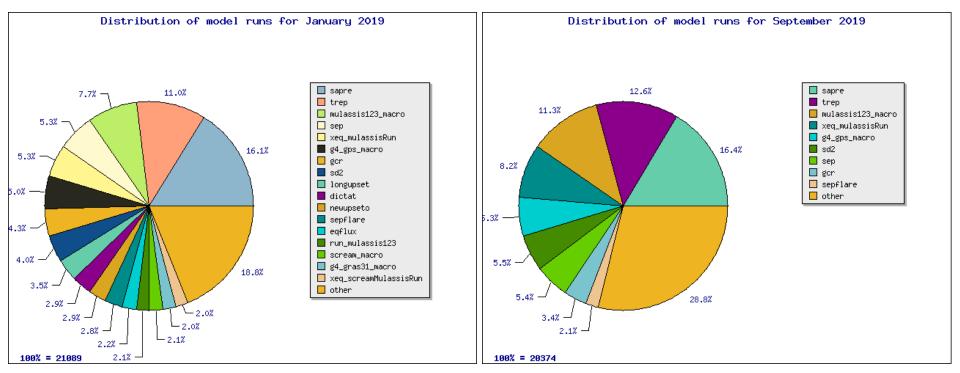
- Mission-based General Particle Source (GPS) macros
- Simple GDML geometry definition tool
- GDML upload & analysis tool
- Material definition tool
 - \checkmark User defined materials
 - \checkmark Selection from predefined lists
 - ✓ Available for MULASSIS, GRAS, GEMAT & PLANETOCOSMICS

User	defined materials (3)						
G4_AI (AI)	Del						
G4_CARBON_DIOXIDE (C-02)	Del						
G4_Si (si)	Del						
Adding new material							
Source:	User defined 🔹						
Name ^(*) : Chemical formula:	User defined SPENVIS list NIST pure elements NIST compounds						
Density [g cm ⁻³]: (*) should include only letter	Add s, digits or underscores and start with a letter						
	Reset Save >>						



The SPENVIS users' profile

- Both experienced & inexperienced Geant4 users access SPENVIS to:
 - ✓ Characterise the space environment e.g. get mission average particle fluxes/fluences
 - ✓ Set up and run full simulations with available Geant4 tools (e.g. MULASSIS, GRAS, etc.)



Some SPENVIS user statistics

Some SPENVIS model statistics

SPENVIS user support

Contact SPENVIS team: spenvis_team@aeronomie.be

SPENVIS The SPace ENvironment Information System				_	
			SPENVIS		CDENI/TO
🗘 Board index			SFERVES		SPENVIS
AlUser Control Panel + View your posts			NAVIGATION		• 6
It is currently Thu Oct 10, 2019 2:23 pm			* Home	BIRA-IASB	The Space Environment Information System
View unanswered posts • View new posts • View active topics			Access Forums		The Space Environment Information System
GENERAL	TOPICS	POSTS	 Bug tracker 		Contact page
General This is the section for general discussions about SPENVIS that are not about a specific model or topic covered in the other sections on this board. Moderators: manu, Moderator	51	113	 Release notes My account 		Please consider posting your question on the forum
COORDINATE GENERATORS	TOPICS	POSTS	 Export results Share project 	From:	Neophytos Messios
Orbit generator The SPENVIS orbit generator computes trajectory occulatory orbital elements using a numerical Runge-Kutta integration method. It can be used for low altitude the spent of the CIRA strangetic model and solar radiation pressure. The independent variable is the eccentric anomaly. Osculatory elements are computed at constant equidistant eccentric anomaly steps. Moderators: manu. Moderator	36	78		To: Subject: Question	SPENVIS team Multi-Layered Shielding Simulation (MULASSIS) - Geant4 tools
Grid generator The coordinate grid generator produces a set or grid of geographical positions that serves as input to the positional version of the following models: atmosphere and ionosphere models; trapped particle models and magnetic field models. Moderators: manu, Moderator	2	3			
RADIATION SOURCES AND EFFECTS	TOPICS	POSTS			
Radiation sources Radiation sources Trapped protons is available as well. Solar proton fluences are predicted for the total mission duration. Moderators: manu, Moderator	77	189			
Solar cell radiation damage Damage-aquivalent electron fluences for different types of solar cells can be evaluated with EQFLUX. Moderator Moderator: manu, Moderator	13	57			
Radiation doses Ionising dose behind three types of AI shielding (SHIELDOSE). Device degradation such as charge transfer efficiency loss in CCDs is estimated by calculating damage-eauvalent proton fluences and non-ionising energy loss (NIEL). With the sector analysis to a simple generation of a spacecraft can be generated to produce a shielding distribution by means of ray tracing. The shielding distribution can be used as input for the ionising or non-ionising dose models. Moderators: manu, Moderator	81	237			
Single event effects The CREME programme suite provides LET spectra of cosmic ray particles, and estimates single-event upset rates in micro-electronics. Moderator	26	68			
				Version:	4.6.10.3386 on https://www.spenvis.oma.be:443

Submit

eesa

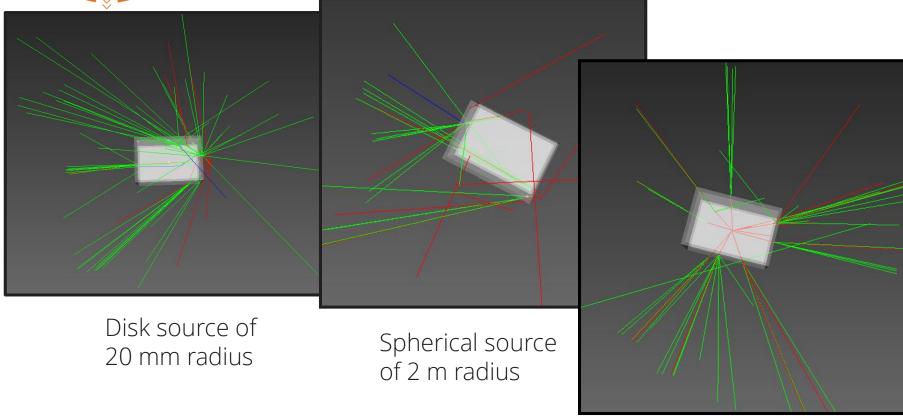
SPENVIS forums: https://www.spenvis.oma.be/forum/inde<mark>x.php</mark>

SPENVIS is developed by a consortium led by the Royal Belgian Institute for Space Aeronomy for ESA's Space Environments and Effects Section through its General Support Technology Programme

GEANT4 TOOLS	TOPICS	POSTS	l
Geant4 tools SPENVIS implements various Geant4 models (Mulassis, GEMAT, SSAT, Magnetocosmics & Planetocosmics) and a number of tools associated with them (e.g. Material definition and geometry definition tools). Moderators: manu, Moderators	94	240	n Institute for Space

- Space environment & source particles
 - ✓ Which source geometry (disc, sphere, etc.) should I select for my 3D GRAS simulations?
 - ✓ Which angular distribution?
 - ✓ How do I use biasing?

- Physical processes
 - ✓ Which Geant4 physics list should I use?
 - How can I use a specific physics model (e.g. High Precision Neutron Model)?
 - ✓ Is there available documentation that explains the different physics lists?



SPENVIS sets automatically the Geant4 physics list based on the primary particle choice (Geant4 **option 3** for pure EM processes or **QBBC** for EM + hadronic processes).

- Geometry
 - ✓ Is my GRAS simulation geometry correct (e.g. position of source & target volumes)?
 - ✓ MULASSIS 1D Vs GRAS 3D simulations! How do I compare these with SHIELDOSE(-2/2Q)?
 - ✓ How can I define my own material? Is there a way to define a mixture of gases?

All sources are positioned w.r.t world

Spherical source of 20 mm radius

- Other simulation settings
 - How many primary particles should I choose (impact on my result e.g. dose, good statistics Vs heavy simulations)?
 - ✓ Is it possible to specify a maximum execution duration (SPENVIS links this to user CPU quota)?

- Normalisation factor
 - \checkmark What is it its purpose in general?
 - ✓ How does SPENVIS calculates its normalisation factors for number of particles in the energy range & angular distribution?
 - ✓ Is there any difference in normalisation for SPENVIS based mission and user-defined spectra?

- Geant4 tools output
 - Can you help me understand the output file (CSV structure, meaning of a specific result etc.)?
 - \checkmark Is the result listed in the output file normalised?
 - ✓ How do I post-process some output e.g. convert the electron fluence/flux output of MULASSIS (i.e. binned spectrum) into a differential electron flux?

- Local copy of Geant4 tools
 - ✓ How can I obtain a local copy of MULASSIS or GRAS?
 - ✓ When MULASSIS or GRAS code will be available for non-ESA member (mostly from US) users?

Users from ESA member countries can request the MULASSIS & GRAS source code from ESA's European Space Software Repository (<u>https://essr.esa.int/</u>)

Some user feedback

- Would be nice to have some well-tested cases for GRAS simulations to run through SPENVIS
- Update Geant4 tools (e.g. MULASSIS) for distinguishing between primary and secondary particles (e.g. Bremmstrahlung)
- Allow the definition of multiple sources in SPENVIS GPS tool

Some user feedback

• The execution report could be improved in some cases (e.g. warnings, error messages etc.)

Selected examples

- **A. Emmanuel et al.**, "A comparison of radiation shielding effectiveness of materials for highly elliptical orbits", Adv. Space Res. 53 (7), 1143–1152, 2014
- **A. Emmanuel & J. Raghavan**, "Experimental validation of simulations of radiation shielding effectiveness of materials by MULASSIS" Adv. Space Res. 58, 2376–2384, 2016

Selected examples

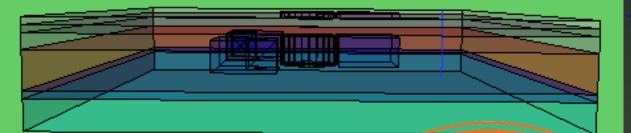
- W. Suparta & S. K. Zulkeple, "Simulation of major space particles toward selected materials in a nearequatorial low earth orbit" Astrophys Space Sci., 362, 104, 2017
 - SPENVIS space environment for RazakSAT-1 mission
 - Simplified 3D geometry (GDML format)
 - TID & NIEL calculations with GRAS
 - Comparison with MULASSIS simulations

Selected examples

- **M. L. Lund**, "High-performing Simulations of the Space Radiation Environment for the International Space Station and Apollo Missions", MSc. in Nuclear Engineering, University of Utah, Salt Lake City, US, 2016
- L. M. Martinez, "Space Radiation Analysis: Radiation Effects and Particle Interaction outside Earth Magnetosphere using GRAS and GEANT4", MSc. in Space Science and Technology, Luleå University of Technology, Kiruna, Sweden, 2009

Current status

- SPENVIS 4. 6.10 coupled to SPENVIS-NG
 - ✓ SPENVIS contains scripts to drive execution of models on SPENVIS-NG remote node
 - ✓ Used for IRENE v1.50, GRAS v4.0 & MULASSIS v1.26
- Migrating SPENVIS to a new machine (SLES 15)


Future plans

- Follow-up SPENVIS project for improving the system:
 - ✓ Redesign the existing SPENVIS front-end to improve user experience
 - ✓ Refactor existing models to increase flexibility (e.g. different models for individual trajectory segments)
 - ✓ Implement new models (e.g. IRI -2016, ATOX effects, FLUMIC updates etc.)

Closing remarks

- Some Geant4 tools are important for many SPENVIS users
- SPENVIS team will continue supporting the users & model developers
- Interaction with Geant4 model developers and expert users is always welcome (new physics lists, reverse MC, etc.)

THANK YOU! MORE INFO?

spenvis_team@aeronomie.be

Neophytos.Messios@aeronomie.be