

Geant4 Usage at JPL

Brian Xiaoyu Zhu*, Bongim Jun, Luz Maria Martinez Sierra, and Insoo Jun

Natural Space Environments Group Jet Propulsion Laboratory, California Institute of Technology

Jet Propulsion Laboratory California Institute of Technology

Before JPL

My previous experience: particle physics, underground rare event searches looking for neutrinoless double-beta decay

Heavily relied on Geant4 simulations for characterizing/understanding radioactivity in all detector materials

Reducing background radioactivity is key when searching for a decay with $t_{1/2} > 10^{26}$ years!

CUORE experiment

10/21/2019

Majorana/LEGEND experiments

Comparison of Geant4 Usage

Majorana/LEGEND

- Geometries are simplified and defined using native Geant4 classes (a lot of work for a graduate student)
- Radioactive decay sources internal to/on surface of volumes
- Significant effort post-processing simulation output to mimic detector response (eg: dead-layer response of germanium detectors)

At JPL

- Complex geometries converted from **CAD to GDML**. Transport analyses are heavily utilized during instrument design and parts selection phase of a mission
- External/omnidirectional radiation environment of electrons and protons

Limited post-processing of simulation output

Summary of Geant4 Activities at JPL

- Support for flagship missions: Europa Clipper
- Support for smaller missions: SPARCS
- Miscellaneous Activities:
 - Juno detector response analysis
 - CAD conversion tools

Europa Clipper

- Europa Clipper will conduct a detailed reconnaissance of Jupiter's moon Europa
 - 45 flybys of Europa with 25 km closest approach
 - Investigate how the ingredients for life might interact to produce habitable environments on Europa
- Complement ESA's JUICE mission
- Intense radiation environment sets heavy design constraints on instruments
 - Transient noise analyses performed using FMC (Geant4) and MCNP)
 - Other tools (RMC) used for TID, DDD, SEE, charging analyses

Code Comparison Studies

- Europa Clipper has many instruments developed by many institutions using a wide range of transport tools
- Tools may produce differing results beyond statistical uncertainties
- Good understanding of dose predictability of transport tools is critical for shielding design optimization
- Tools compared: Geant4.10.5, MCNP6.1, FASTRAD 3.8.10, NOVICE2017
 - Simple geometries used to compare all tools
 - JPL's heritage transport tools are MCNP and NOVICE

Jovian Radiation Environment

10/21/2019

- Intense radiation environment, dominated by trapped electrons
- Trapped particle fluences derived using Divine-Garrett and GIRE3 models
- Solar proton fluences from JPL-SPE model

Shielding Geometries Used

10/21/2019

• Shielding Materials

- Aluminum (2.7 g/cm³)
- Tantalum (16.6 g/cm³)
- Scanned a wide range of shielding thicknesses (0.05 to 30 g/cm^2)
- Point detector used for **RMC** studies
- Volume detector (spherical shell r=5mm) used for FMC studies

Spherical Shell

1. Material S-1: Aluminum S-2: Tantalum/Al S-3: Ta 2. Dimension Radius: 5 cm Thickness: 0.05 ~ 30 g/cm²

Cubic Box

1. Material B-1: Aluminum **B-2: Tantalum/Al** B-3: Ta 2. Dimension Length: 10 cm Thickness: 0.05 ~ 30 g/cm²

Cylindrical vault

1. Material C-1: Aluminum C-2: PCB/Ta/Aluminum C-3: Ta 2. Dimension Cylinder (RxH)=10cm x30cm Box/slab length= 10cm Thickness: 0.25 cm

Lessons Learned: Input Spectrum Format

Same environment, but with additional interpolated points using log-log interpolation

- Initial comparisons with MCNP showed up to 30% difference in TID values at large shielding thicknesses, discovered it was due to differences in input spectrum
- When comparing tools, **consistent input spectra** format is very important
 - GPS internally converts integral fluence to differential before sampling
 - Adding additional interpolation points to environment spectrum with few energy points provides more consistent results
- Decided to use the binned input format, to stay consistent with MCNP input format

TID Comparison Results [1/2]

- Good TID agreement between Geant4 and MCNP
 - Discrepancy increases with high-Z and shielding thickness
- FASTRAD (FMC) comparable to Geant4, but with larger uncertainty
- RMC results are comparable to with ±20%, neither FASTRAD nor NOVICE are always conservative compared to FMC

Tool/MCNP Other [.]

TID Comparison Results [2/2]

Aluminum only

Al Thickness [g/cm ²]	TID_MCNP [krad, Si]	Geant4 /MCNP	FASTRAD FMC /MCNP	FASTRAD RMC/ MCNP	NOVICE/ MCNP	Al/Ta Thickness [g/cm ²]	TID_MCNP [krad, Si]
0.05	4.62E+03	3.1%	8.4%	10.7%	-7.9%	0.025/0.025	4.62E+03
0.1	4.37E+03	4.0%	7.5%	12.1%	-7.2%	0.05/0.05	4.36E+03
1	1.32E+03	-4.4%	-9.2%	2.8%	-12.6%	0.5/0.5	1.08E+03
3	3.33E+02	-5.2%	-9.8%	0.0%	-10.3%	1.5/1.5	2.25E+02
5	1.34E+02	-3.7%	-4.0%	-3.1%	-5.8%	2.5/2.5	8.56E+01
10	3.34E+01	-0.6%	4.8%	-13.7%	7.9%	5/5	2.05E+01
20	1.11E+01	-1.6%	-5.0%	-18.1%	18.3%	10/10	9.56E+00
30	6.82E+00	-3.0%	-9.3%	-22.9%	5.9%	15/15	4.97E+00

Aluminum

+

Tantalum

Tantalum only

Geant4 /MCNP		FASTRAD FMC /MCNP	FASTRAD RMC/ MCNP	NOVICE/ MCNP	
	2.4%	6.6%	10.9%	-7.4%	
	2.4%	5.4%	11.3%	-6.8%	
	14.1%	-13.3%	1.8%	5.0%	
	-4.2%	-14.5%	-5.4%	29.3%	
	-6.4%	-21.0%	-14.7%	43.7%	
	8.5%	-4.5%	-21.0%	72.3%	
	-10.1%	-17.7%	-33.7%	27.6%	
	2.8%	-2.8%	-12.4%	40.6%	

Ta Thickness [g/cm ²]	TID_MCNP [krad, Si]	Geant4 /MCNP	FASTRAD FMC /MCNP	FASTRAD RMC/ MCNP	NOVICE/ MCNP
0.05	4.46E+03	4.9%	-0.4%	16.1%	-4.6%
0.1	4.26E+03	2.9%	2.3%	12.0%	-4.6%
1	9.72E+02	12.3%	-21.3%	-4.5%	17.2%
3	1.91E+02	-9.7%	-24.6%	-17.2%	51.7%
5	7.93E+01	-9.6%	-22.7%	-29.5%	52.6%
10	3.17E+01	-6.4%	-11.9%	-33.6%	9.4%
20	1.67E+01	-6.1%	-12.8%	-20.7%	-28.2%
30	9.72E+00	3.5%	-10.5%	-5.8%	-29.5%

Transient Noise Analyses

- Detecting stars among high rate of transient ionizing events presents a unique challenge for SRU algorithms
- Geant4 used to estimate transient noise:
 - Used mono-energetic electron/proton to scan over energy range of environment
 - Modeled signal deposition and noise contributions along different spacecraft trajectories with different fluxes
 - Provided insight on directionality of penetrating events

SRU Optical Head

CAD conversion to GDML via FASTRAD

SPARCS

- Star-Planet Activity Research CubeSat (SPARCS)
 - UV radiation from M-type stars (red dwarfs) affects atmospheric loss of exoplanets, impacting habitability zone
 - Monitor NUV (260-300 nm) and FUV (153-171 nm) emissions to assess the habitability of exoplanets orbiting these stars
 - 6U CubeSat, sun-synchronous orbit at ~500 km altitude
- First mission dedicated to monitoring the high-energy radiation environments of exoplanets
 - One of the few CubeSats with science mission requirements

SPARCS Mission Science Goals

Notional Payload Configuration

SPARCS: Geant4 Analyses

- JPL team provides the camera for the spacecraft
- Geant4 analyses:
 - TID analysis over full mission trajectory
 - Transient noise analysis over operational periods
 - Experimenting with Geant4 optical photon simulations (and comparing with analytic calculations) to estimate Cerenkov background

CAD conversion to GDML via FASTRAD

Geant4 visualization using VRML

Miscellaneous Activities

- Geant4 simulations on Juno instruments to characterize response to high energy radiation
- Exploring other CAD conversion tools: DAGMC
 - Can potentially integrate geometry models for Geant4, MCNP, FLUKA, etc

Summary

- Ramping up Geant4 usage at JPL to support space missions
- Many lessons learned from transport code comparison studies with simple geometries
- Ongoing efforts to better understand Geant4 as well as exploring new tools to improve our analysis capabilities

Jet Propulsion Laboratory

California Institute of Technology