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The MIDAS device ADVCOS .°))EEAE

The MIDAS Device is developed in the context of a Technology Research Project funded by the
European Space Agency under the contract 4000119598/17/NL/LF for a “Highly miniaturized
ASIC radiation detector”

The first prototype of the MIDAS device (left) and its geometry model inserted in Geant4 toolkit (right)
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The device concept
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Radiation fields in Space
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Quantities to be determined ADVEOS --))EEAE

(excerpt from ICRP! publication 123)

Quantities to be measured are radiation fluence
rates, the energy distributions of different types of
particles and linear energy transfer (LET)
distributions.

One may either calculate organ doses in a body
using the radiation field data outside of the
spacecraft and a code that combines radiation
transport into the spacecraft and into the human

body,
Or

one may assess the radiation field parameters near to
an astronaut and then apply fluence to dose
conversion coefficients for all types of particles

involved for the assessment of organ doses , . L ,
M International Commission on Radiological Protection

Geant4 Space Users Workshop, Oct 20-23, 2019, Xylokastro, Greece p-7
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MC Study Targets (until now) EADVEOS .-))EEAE

DEMOKRITOS

Investigate the possibility to determine:

> The type of the charged particles that traverse the detector

» The energy of the charged particles that traverse the detector
» The neutron fluence spectra

Using the per event information recorded by the detector :

» Deposited Energy
» Topological structure of the deposited energy

Geant4 Space Users Workshop, Oct 20-23, 2019, Xylokastro, Greece
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Geant4 models ADVCOS :°))

— Geometry models for the 1= Physics lists:
and 2" version of the device High Precision (HP) Models

QGSP_BERT_HP

Sources (particle guns, isotropic spherical sources)

> Particle beams for protons, iron, neutrons

»  Isotropic sources both mono-energetic and with GCR spectral
densities for the following particles:

Protons, “He, °C, “N, 160, ?°Ne, %8Si, 9Ca, “Ti and *°Fe ions.

> Sources based on the GCR spectrum are provided by OMERE

Geant4 Space Users Workshop, Oct 20-23, 2019, Xylokastro, Greece p- 10




Pre-processing: track finding

ADVCOS --))EEAE

> Energy deposition is registered in Si pixels (105.5%X105.5%50 pm?).
»  Clusters of hits are defined using the barycenter of energy depositions (hits) above 20keV in each Si layer.

» The charged particle track is estimated as a 3D line fitted to the barycenters of the most energetic clusters.

If the sum of square distance of the line from the cluster centers is less than 0.001 mm?, the
directional cosine with respect to the vertical direction of incidence is calculated.

>  Only events with 4 layers participating in the 3D line fit are used (reduced sample)

Relative Probability

Geant4 Space Users Workshop, Oct 20-23, 2019, Xylokastro, Greece

!!!.-HT

_.
S

-
=

-
=)
b

Angle between Real and Reconstructed track

lons

[]Proton

c12

[ JFes56

S IIIIIII| T TTTT

0.2
Angle between Real and Reconstructed track [rad)

n &
Ihl IH LI |
0.4 0.6 0.8 1 1.2 1.4 1.6

Relative Probability

-

_.
<

1072

Angle between Real and Reconstructed track

lons

[]Proton

C12

[ ]Fes6

Events with 4 layers

o oo W] o M il L = L e |
0.2 0.4 0.6 0.8 1 1.2 1.4 1.6
Angle between Real and Reconstructed track [rad]

DEMOKRITOS

University
of Cyprus

p. 11



University
of Cyprus

Pre-processing: E

sy ADVCOS .°))

»  The absolute value of the deposited energy asymmetry, E___, between inbound

asym?

(E,, E,) and outbound (E., E,) groups of consecutive Si layers is calculated as
+E)-(E +E))
+E +E +E,

asym

g, =&
E

» Events with 0< E__ < 0.9 are selected to avoid misleading 6-rays traversing

asym

the outbound group of layers
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Features extraction
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Features: (cont’d)

(2) Number of pixel hits per event

h1
£ L lons
5 []Proton
8 []Alpha
E oL C12
& = Fe56
10°° =g
107
B (L | | 1 1 I I 1 I 1 I I I 1 1 | 1 1 I I I

80 100 120 140 160 180 200
Number of Hits in Si Layers

=
]
]
oY
=
o
]

Geant4 Space Users Workshop, Oct 20-23, 2019, Xylokastro, Greece

ADVCOS --))EEAE

University
of Cyprus

) The sum of squares distance of the pixel hits from the

cluster barycenter.
The mean sum of squares in the 4 track layers is used
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4 : : : :
4) The mean weighted sum distance of the pixel hits (5) The absolute value of the energy asymmetry, E,
from the cluster barycenter with weight E,;,/E .. between “in” and “out” layers ( based on the track
reconstruction) with 0<E_  <0.9
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Features: (cont’d)

() The number of hits in active layers i.e.
layers with recorded energy above 20keV
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(7) The mean (in the 4 Si layers) of the maximum

Relative Probability
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Features: (cont’d) ADVCOS ) o o
®) The mean (in the 4 Si layers) of minimum ) The mean (in the 4 Si layers) of the weighted
distance of a hit from the cluster’s barycenter maximum of distance of a hit from the cluster’s
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Features: (cont’d) ADVEOS --))EEAE

(19) The mean (in the 4 Si layers) of the weighted minimum of distance of a hit from the cluster’s
barycenter with weight E,./E
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The problem of finding the type of the impinging particle is handled as a multi-classification problem
between:
» Protons, “He, 12C, 14N, 160, 2°Ne, 28Si, “°Ca, “®Ti and 5°Fe
The problem of finding the kinetic energy of a primary particle is handled as a regression problem.
(applied to protons only until now)
The Toolkit for Multi-Variate Analysis (TMVA) package! has been used
We’ve tested
»  Gradient Boosted Decision Trees (BDTG) 1
A. Hoecker, P. Speckmayer, J. Stelzer, J.
N Deep. Neural Networks (DNN_CPU) Therhaag, E. von Toerne, and H. Voss,
»  Multi-Layer Perceptron (MLP) TMVA - Toolkit for Multivariate Data
Analysis, PoS ACAT 040 (2007),
arXiv:physics/0703039

but the best performance is achieved by BDTG and DNN

Geant4 Space Users Workshop, Oct 20-23, 2019, Xylokastro, Greece p- 19



Gradient Boosted Decision Trees ADVEOS ) EEAE o Co
(BDTG)

DT in general consists of a

* Consecutive set of questions (nodes) pure Sianal Hodes S/(S+B)=0.446 Decision Tree no.: 1

Pure Backgr. Nodes NHits> 6.59

* Yes/No decision

S/(S+B)=0.669 S/(S+B)=0.228

* Final verdict (leaf) is reached after a

. . NHits> 4.04 AverDirEdep>1.52e+03
given maximum number of nodes
(Trained phase is required ) S/(S+B)=0.599 S/(S+B)=0.709 S/(S+B)=0.454 S/(S+B)=0.000
EAsym>0.166 NHits> 5.02 AverDirEdep> 513 AverClusterMinDr> 1.52
S/(S+B)=0.628 S/(S+B)=0.698 S/(S+B)=0.720 S/(S+B)=0.000 S/(S+B)=0.000
. e +B)=0. +B)=0.044
DTs suffer from instabilities EAsym>0.0747 S/(5+5)=0.558 EAsym>0.246 EAsym>0.258 [N ...c..cmucmomo - bl EAsym>0.141 EAsym>0.229

* Create a forest of trees

S/(S+B)=0.721

[ ] Each misclassified eVent iS S/(S+B)=0.627 l| S/(S+B)=0.630 S/(S+B)=0.653 S/(S+B)=0.726 il S/(S+B)=0.712 |l S/(S+B)=0.903 W S/(S+B)=0.406 S/(S+B)=0.000 | S/(S+B)=0.000 S/(S+B)=0.000 |§ S/(S+B)=0.000
reweighted (boosted)

* A scoring algorithm that spans sie-o-o7er [llsisB)-0714
through all trees defines the final
decision

Geant4 Space Users Workshop, Oct 20-23, 2019, Xylokastro, Greece p.- 20
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Particle classification: BDTG,, ADVCOS -;;-)) EEAE

Gradient boosted decision trees outputs

» BDTG discriminates efficiently protons (left) and alpha (right) from other particles

BDTG OQutput for Proton Selection BDTG Output for Alpha Selection
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Particle classification: BDTG,, ADVCOS --))EEAE

BUT, discrimination between 2C, N and 'O is not sufficient

BDTG Output for C12 Selection BDTG Output for O16 Selection
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Particle classification: DNN
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Classification of heavier ions is better using the Deep Neural Network Classifier.

DNN_CPU Output for Si28 Selection
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ROC Curves

The Receiver Operating
Characteristics (ROC) curves
demonstrate the effectiveness
of distinguishing the signal
from the background

*Light particles
BDTG (blue curve)

*Heavy particles
DNN (red curve)

Background Rejection (1-eff)

Background Rejection (1-eff)
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ROC Curve Proton vs Rest
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Kinetic energy estimation ADVCOS .°))EEAE
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The problem of finding the kinetic energy of an impinging particle is handled as a multivariate regression
problem for each particle type. The method has been tested on a isotropic monoenergetic proton sample.

We’ve tested
> BDTG
> DNN
»  Multi-Layer Perceptron (MLP)

but best performance is achieved by BDTG and MLP.

The same data sample was used as in multiclassification of ions with the same extracted features
(variables) as input

Geant4 Space Users Workshop, Oct 20-23, 2019, Xylokastro, Greece p. 26
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* Features X={x,, X,, ...} NHits :
* Target Y:{YP Yo - 3 AverDirEdep :

the MLP can learn the relationship ActiveLayers :
between the features X and the

target Y based on a set of weights
adjusted during the training phase AverClusterMinDr :
via the back propagation algorithm

AverClusterMaxDr :

AverClusterMaxDrNorm :

For the case of E we use AverClusterMinDrNorm :

kine»

 Layer,: 10 nodes (input features) AverClusterSumDr2 :

* Layer,: 30 nodes (hidden layer) AverClusterSumDr2Norm :
* an output (E,_ )
EAsym :

Bias node :

200000000000000000000008804

-

<
1]
=

Qutput layer
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Results ADVCOS .- ))EEAE
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BDTG ad MLP efficiently estimate the energy of the proton up to ~500 MeV. In higher proton energies
the energy is underestimated mainly due to the similar directional energy deposition in the Si Layers.

Regression

Ekine -EkineTMa for Ekineme=250 MeV
hBDTG4
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» We plan to improve the energy clustering algorithm:
v Find local clusters which are due to the passage of the primary particle
v Discriminate energy depositions due to §-rays

» The above will enrich the data set with the events that now are excluded from the study:
v include events with energy asymmetry close to one

»  The MVA techniques based on Monte Carlo data can be used for efficient particle identification and
kinetic energy determination.

»  MVA techniques for particle identification do not depend on the GCR spectrum thus may be used
for identifying fragmentation products

» Next steps in the MC study:
v Kinetic energy determination for other particles

v Inclusion of a spaceship model.

Geant4 Space Users Workshop, Oct 20-23, 2019, Xylokastro, Greece p- 29
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BACKUP SLIDES
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BDTG parameters

BTDG
Training Sample (Events) 20763
Testing Sample (Events) 20763
Max Trees 5000
Max Depth 5
Variable Granularity (nCuts) 50 M I P
Boost Type Bagging \j p aramEterS
BaggedSampleFraction 0.50
Grad \l
Training Sample 20000
Separation Type Gini Index
Testing Sample 4000
Cross Entropy
Gini Index with Laplace Moy @ Byl .00
Mis Classification Error Hidden Layers 26
SDivSqrtSPlusB TestRate 6
Regression Variance < Training Method BFGS
Prune Method No Pruning Sampling 0.3
Expected Error Sampling Epoch 0.8
Cost Complexity \l
Convergence Improve 1E-6
Convergence Tests 15
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