http://ep.nao.cas.cn

The impact of low-energy electrons on EP-WXT based on Geant4 simulations

Speaker: Donghua ZHAO 赵冬华 Collaborators: Chen Zhang (张臣), Weimin Yuan (袁为氏)

National Astronomical Observatories, CAS, China

Outline

- 1. EP mission
- 2. Low energy electrons
- 3. Results of electron detections in EP-WXT
- 4. Magnetic diverter
- 5. Conclusion and further studies

Einstein Probe (EP)

Objectives:

- 1. To survey the soft X-ray sky
- 2. To detect **TDEs** and quiescent **black holes**
- 3. To discover the EM counterparts of **GWEs** and locate them.

EP payload——WXT

Concentration of e- in WXT

Low-Energy Electrons <1 MeV

Nagata 1988: Ground-based radio-transmitters

Kuznetsov and Myagkova 2002: Global thunderstorms activity

High flux, Large fluctuation

Firsov Scattering Model

Firsov 1967:

$$N(\phi,\theta) = \frac{3}{2\pi\phi} \frac{(\phi\theta)^{3/2}}{(\phi^3 + \theta^3)}$$

 Φ : incident angle, ϑ : reflection angle

Fan Lei et al. 2004: G4FirsovScattering

e- through WXT optics

Process	Spectrum 1	Spectrum 2	
MSC	7.2	4.1	
Firsov1deg	17	9.4	
Firsov10dea	64 7	32.3	

WXT 's background due to e-

物理模型	Leicester model		New model	
	cts/s/WXT	cts/s/cm ²	cts/s/WXT	cts/s/cm ²
Firsov1deg	6810	45	2708	18

Other Background (CXB and cosmic rays)) : 0.2 cts/s/cm²

物理模型	1-3 keV	3-150 keV	150-300 keV	300-1000 keV
Leicester model	0	78.9%	0.3%	20.8%
New model	0	70.4%	0.9%	28.7%

~96% of e- at 300-1000 keV need to be deflected to

reduce the e- background to 0.2 cts/s/cm².

Magnetic diverter

A problem of the shield

Impact of different shield materials

The percentage ($\%\,$) of e- at 300-1000 keV that are detected in different deposit energy range.

Shield Materila	0.5 <en<6 kev<="" th=""><th>0.5<en<8 kev<="" th=""><th>En>8keV</th><th>En>0</th></en<8></th></en<6>	0.5 <en<8 kev<="" th=""><th>En>8keV</th><th>En>0</th></en<8>	En>8keV	En>0
Cu 29	3.0	4.6	5.6	10.2
AI 13	2.4	4.0	4.4	8.4
C 6	2.2	3.7	4.4	8.1
Νο	1.4	1.7	0.5	2.2

Conclusion and further studies

- Diverter can significantly reduce e- to an acceptable level
- To test the diverter deflection efficiency
- To test the shielding structure influence
- Further studies on e- impact with the diverter

Thank you for your attention

