Quantitative estimation of biological effects after irradiation by MPEXS-DNA

Shogo OKADA¹, Koichi MURAKAMI¹, Sebastien INCENRTI², Katsuya AMAKO¹, Ye Chen¹, and Takashi SASAKI¹

> ¹KEK, Japan ²CENBG, IN2P3, CNRS, France

2019.10.22 (Tue.) 14th Geant4 Space Users Workshop @ Xylokastro, Greece

Background

- Geant4 Japan has been involved in Geant4 since even before the Geant4 collaboration established
 - KEK leads university groups in Japan
- MPEXS is developed in collaboration with Stanford University and SLAC to solve calculation time for some of Geant4 applications using GPU
- MPEXS-DNA is corresponding to Geant4-DNA to speed up simulation as an extension to MPEXS

Goals

- Geant4-DNA simulation needs a long computation time
 - Tracks a large number of particles and molecular species with the Monte Carlo method
 - **Days-weeks** simulation on CPU typically
- MPEXS-DNA: A nanodosimetry simulator running on GPU
 - Boosts up computing performance for physics and chemistry simulation drastically
 - 2,900 times speedup against Geant4-DNA
 - Boosts simulation studies in nanodosimetry

- Next step:
 - Implementing an alternative model for chemistry simulation
 - Quantitative DNA damage estimation

MPEXS-DNA: A Nanodosimetry simulator on GPU

Geant 4

Physical Stage (1)

Electromagnetic interactions for Geant4-DNA are available

	Partic	les	Electrons	Protons	Hydrogen atoms	Helium atom (He++, He+, He	Li, Be, B, C, N e ⁰) O, Si, and Fe	N,
	Ela	astic ttering	9 eV - 10 keV Uehara 10 keV - 1 MeV Champion	100 eV - Hoa	100 eV - 1 MeV 100 eV - 10 MeV Hoang Hoang		eV _	
	Exc	itation	10 eV - 10 keV Emfietzoglou 10 keV - 1 MeV Born	10 eV - 500 keV Miller Green 500 keV - 100 MeV Born	10 eV - 500 keV <mark>Miller Green</mark>	1 keV - 400 M Miller Greer	eV _	E_2 E_1
	Eleo excl	ctron- hange	—	100 eV - 10 MeV Dingfelder	100 eV - 10 MeV Dingfelder	1 keV - 400 N Dingfelder	leV _	H atom -> p
	loni	zation	10 eV - 10 keV Emfietzoglou 10 keV - 1 MeV Born	100 eV - 500 keV Rudd 500 keV - 100 MeV Born	100 eV - 100 MeV <mark>Rudd</mark>	1 keV - 400 M <mark>Rudd</mark>	eV 0.5 MeV/u - 1.0x10 ⁶ MeV/u Rudd	
- And a	Vibra exci Diso	ational itation ociative	2 - 100 eV Michaud et al. 4 - 13 eV	 Atomic deex Emits aug 	citation ger electrons a	and <u>fluores</u>	scent X-rays	
,		mient	Weiton		The Livermo	ore model for fl	uorescent X-rays	$AB + e^{-} \rightarrow AB^{-} \rightarrow A +$
					Compton so	attering	100 eV - 1 GeV	
	Then	excite	avs into mol	ater molecules ecular species	Photoelectr	ic effect	100 eV - 1 GeV	
at the physico-chemical stage			Gamma cor Ravleigh sc	attering	100 eV - 1 GeV 100 eV - 1 GeV			

5/20

Physical Stage (2)

- All physics lists for Geant4-DNA are covered lacksquare
- Some physics models released after 10.2 are not implemented ullet
 - Physics interactions for materials other than water:
 - DNA components

. . .

6/20

Gold for nano particle simulation \bullet

 \rightarrow will be implemented soon...

•••	: Available, X: La	ter
Physics lists / models for G4-DNA (10.5.1)	MPEXS-DNA	
G4EmDNAPhysics		
G4EmDNAPhysics_option1		
G4EmDNAPhysics_option2		
G4EmDNAPhysics_option3		
G4EmDNAPhysics_option4		
G4EmDNAPhysics_option5		
G4EmDNAPhysics_option6		
G4EmDNAPhysics_option7		
G4EmDNAPhysics_option8		
Others (ex. DNA components)	×	

Physico-Chemical Stage (a.k.a. Pre-chemical Stage)

- All processes in Geant4-DNA are implemented in MPEXS-DNA:
 - Dissociation, relaxation, and electron-hole recombination for H₂O⁺/H₂O⁻, H₂O^{*} molecules
 - Thermalization for electrons

7/20

• Transform into solvated electrons (e-aq)

Electronic state	Process	Dissociation channel	Fraction (%)
Ionization state	Dissociative decay	$H_3O^+ + \bullet OH$	100
Excitation state: A1B1	Dissociative decay	●OH + H●	65
	Relaxation	$H_2O + \Delta E$	35
	Auto-ionization	$H_3O^+ + \bullet OH + e_{aq}$	55
Excitation state: B1A1	Dissociative decay	●OH + ●OH + H ₂	15
	Relaxation	$H_2O + \Delta E$	30
Excitation state: Rydberg,	Auto-ionization	H ₃ O ⁺ + ●OH + e ⁻ aq	50
diffusion bands	Relaxation	$H_2O + \Delta E$	50
Dissociative attachment	Dissociative decay	$\bullet OH + OH^- + H_2$	100
	Dissociative decay	●OH + ●OH + H ₂	15
Electron Hole Recombination	Dissociative decay	●OH + H●	55
	Relaxation	$H_2O + \Delta E$	30

Chemical Stage

- Simulate diffusion and chemical reactions for molecular species from 1 ps to 1 us after irradiation
 - Reactions based on the Smoluchowski theory
 - Molecular diffusion with a step-by-step method
 - Dynamical time-stepping
 - Calculate encounter probability using the Brownian-bridge method

- Two sets of parameters:
 - G4EmDNAChemistry and G4EmDNAChemistry_option1

Diffusion Coefficients [x10⁻⁹ m²/s]

	G4EmDNAChemistry	G4EmDNAChemistry_opt1
H ₃ O+	9.0	9.46
H∙	7.0	4.8
OH-	5.0	5.3
e⁻ _{aq}	4.9	4.9
H ₂	4.8	4.8
●OH	2.8	2.2
H_2O_2	2.3	2.3

	_	
	G4EmDNAChemistry	G4EmDNAChemistry_opt1
2e ⁻ aq + 2H ₂ O -> H ₂ + 2OH ⁻	0.50	0.636
e⁻ _{aq} + •OH -> OH⁻	2.95	2.95
$e_{aq} + H \bullet + H_2O \rightarrow OH^- + H_2$	2.65	2.50
e- _{aq} + H ₃ O+ -> H● + H ₂ O	2.11	2.11
e ⁻ aq + H ₂ O ₂ -> OH- + ●OH	1.44	1.10
●OH + ●OH -> H ₂ O	0.44	0.55
●OH + H● -> H ₂ O	1.44	1.55
$H \bullet + H \bullet -> H_2$	1.20	0.503
H ₃ O ⁺ + OH ⁻ -> 2H ₂ O	1.43	11.3

Reaction Rate Constants [x10¹⁰/(M·sec)]

8/20

^{10/20} Chemistry Verification/Validation

- Compared G-value plots of MPEXS-DNA to the other MC simulations and measurement data
 - Physics List: G4EmDNAPhysics_option4 and G4EmDNAChemistry

A: G-value time profile for \cdot OH radicals from 1 ps to 1 μ s after irradiation of 750 keV electrons

H molecules

H, mblecinglecules

^{11/20} MPEXS-DNA Performance

- MPEXS-DNA is much faster than Geant4-DNA
 - ~ 4 days (CPU) -> ~ <u>2 min.</u> (GPU)
 - 1 GPU unit has the equivalent computing power as 2,900 CPU cores

Geant4-DNA (CPU) ■ MPEXS-DNA (GPU) 100000 Throughput (#events/min) 7675.168 10000 1715.316 1000 100 1,430x 2,885x 10 2.66 1.199 1 e 750 keV p 20 MeV

Comparisons of event number processed per 1 min.

- GPU: NVIDIA, TITAN V
- CPU: Intel, Xeon E5-2643 v2, 3.5 GHz

^{12/20} **MPEXS-DNA Functionalities**

	Status
Physics Stage	 Most of physics models in G4DNA can be run Physics models for materials other water will be implemented
Physico-chemical Stage	 Implemented all processes in G4DNA: Dissociation, Relaxation, and Electron hole recombination for H₂O*, H₂O+/H₂O⁻ Thermalization for electrons
Chemical Stage	 Simulate diffusion and reactions with the same manner as G4DNA Two-parameter sets: G4EmChemistry and G4EmChemistry_option1

Recent activities on MPEXS-DNA

-Quantitative estimation of early DNA damages induced by radiation -

^{14/20} Implementation of An Alternative Model for Chemistry Stage

Plante's approach

- Ref.) I. Plante, DOI: 10.1007/s00411-011-0367-8
- · Based on the Smoluchowski theory for reactions
 - Handling electrostatic interactions and spin effects
 - Computing encounter probability by solving the diffusion equation with Green's function
- "Background reaction"
 - Simulating reactions with homogeneously highconcentrated species in the medium
 - ex. radical scavengers
- Implementation of Plants's approach in MPEXS-DNA
 - Diffuse molecules step-by-step by Brownian motion
 - Adopting static time-stepping
 - Implemented using G4DNA (10.5 and 10.6 beta) tentatively
- Plante's approach with *IRT* for Geant4-DNA
 - Developing by Wook (CENBG) and Hoang (IRNS) with the support from Jose (UCSF)

ORIGINAL PAPER

A Monte-Carlo step-by-step simulation code of the non-homogeneous chemistry of the radiolysis of water and aqueous solutions. Part I: theoretical framework and implementation

Ianik Plante

G-value time profile for \cdot OH radicals from 1 ps to 1 μ s after irradiation of 750 keV electrons

Estimation of DNA Damages

- Geant4-DNA calculates early radiation damages using a complex geometry of the cell nucleus
 - Process flow:

15/20

- 1. Calculate distributions of energy loss and molecular species
- 2. Score the positions at which physical and chemical interactions occurred with DNA molecules in a cellular geometry
- 3. Evaluate DNA damages with higher geometrical accuracy
- Reproduce experimental data and the other simulation results well
- We are trying to estimate DNA damages with an alternative approach
 - Simple cell model for geometry
 - Clustering model for DNA damages

Quantitative Estimation of DNA Damage Using Clustering Model

- *"clustering"*: An extended example for Geant4-DNA
 - Evaluates DNA damage induced by direct effects
 - Ref.) DOI:10.1016/j.cmpb.2010.12.012
- We extend the *"clustering"* application
 - Estimate DNA damages by *indirect effects* as well as direct effects
 - Assume that DNA molecules are homogeneously diluted in a box geometry (Simple cell model)
 - Simulate track structure of charged particles and molecular species
 - Using the Plante's approach for chemistry simulation
 - Sample the positions at which reactions with DNA components occurred, then evaluate DNA damages

Damage Estimation for Proton Irradiation

A: LET (keV/um) vs Proton Energy (keV)

- Primary particles:
 - Protons with $E_{kin} = 500 \text{ keV} 100 \text{ MeV}$
- LET:
 - Consistent with measurements
- DNA damages:
 - Reasonable agreement with the experimental data and the PARTRAC simulation result

B: Single Strand Break(SSB) C: Double Strand Break(DSB)

D: SSB/DSB

Future Plans

- Extending functionalities in MPEXS-DNA for nanodosimetry simulations
 - More complex geometry exported from CAD
 - ex. DNA double helix structure
 - Various materials other than water (ex. DNA components)
 - Multi-GPU simulations on Cloud services / Supercomputer
 - "Almost infinite" scalability
 - ex. 27,648 GPUs (TESLA V100) @ Summit
 - MPEXS-DNA will pioneer a scientific frontier in raidobiology
 - Better understanding mechanism of DNA damages
 - More precise estimation of effects on chronic radiation exposure
 - ex. Astronauts, Airline crew, medical diagnostic, ...
 - Quicker development of next-generation radiotherapy technique
 - ex. Flash radiotherapy
 - → Further developments are continuing

MPEXS License Model

Two models:

- Collaboration license
 - Only for groups who expect to submit a paper jointly within 1 year
 - Free of charge
 - The newly earned intellectual properties in the collaboration are requested to be donated to KEK or to be put in the public domain
 - Also shall not exercise the moral rights of the author or any other similar rights
- General license
 - Contracts with KEK are required
 - A license fee will be requested

Summary

- MPEXS-DNA is a nanodosimetry simulator based on Geant4-DNA running on GPU
 - Most of functionalities in Geant4-DNA are available
 - A paper on MPEXS-DNA was published from Medical Physics
 - DOI: 10.1002/mp.13370
- Recent activities:
 - Implemented Plante's approach with a step-by-step method as an option of chemistry simulation
 - Quantitative estimation of radiation damages of DNA molecules with a simpler approach
 - Simple cell model / clustering model
 - Reasonable agreement with the measurement data
 - These developments will be delivered soon in both MPEXS-DNA and Geant4-DNA
 - MPEXS-DNA also boosts the development of Geant4-DNA
- MPEXS-DNA is <u>NOT</u> open source
 - Collaboration based on license contract is available
 - Contact: Prof. Takashi SASAKI (KEK, takashi.sasaki@kek.jp)
- MPEXS-DNA is promising to pioneers a new promising frontier in radiobiology!

Backup

How To Estimate Early DNA Damages

- Water target: 1 x 1 x 1 um³
- Volume fraction of DNA region against the target: 2%
 - Base pair density: ~0.018 bp/nm³
 - ~0.015 bp/nm³ for human cell
- Energy deposition above 10.79 eV into DNA segment yields a single strand break (SSB)
- Reactions with a DNA molecule by •OH radical is handled as "background reaction" of the Plante's approach
 - $P(\Delta t) = 1 exp(-ck\Delta t)$
- Prob.(a sugar radical -> SSB) = 0.4
 - Ref.) Nathanael's work
 - DOI: 10.1016/j.ejmp.2017.12.008
- Scavenging capacity: 4.0 x 10⁸ /s
 - Life time for •OH radicals: 2.5 ns

Simple DNA geometry of double helix structure Ref.) Phys. Med. Biol 63 (2018) 175018 (19pp)

Ref.) DOI:10.1038/s41598-017-11851-4

Reaction	Reaction rate $(10^9 M^{-1} \cdot s^{-1})$
2 -deoxyribose + OH^{\bullet}	2.5
Adenine + OH•	6.10
Guanine + OH•	9.20
Thymine + OH•	6.40
Cytosine + OH•	6.10