

RECENT DEVELOPMENTS FOR GEANT4 LOW-ENERGY HADRONIC PHYSICS

V. Ivanchenko CERN & Tomsk State University, Russia

14th Geant4 Space User Workshop Xylokastro 20400, Korinthia, Greece - Octobe<u>r 20-23, 2019</u>

Outline

Introduction

- Geant4 hadronic physics design
- High energy models in Geant4 10.6
- Low energy models in Geant4 10.6
- Selected validation results
- Hadronic Cross Section Updates
- Summary

Introduction

- Geant4 hadronic working group is focused first of all on simulation for experiments at LHC
 - ~100 B events are already simulated for LHC detectors
- LHC results are sensitive to systematic uncertainty of Monte Carlo
- Low-energy component of hadronic shower affect results for
 - Simulation of calorimeter responses
 - Simulation of background for tracking detectors
- Requirements for low-energy hadronic models
 - Provide correct energy deposition and fluctuation
 - 4-momentum balance in each interaction
 - CPU and memory efficiency

Hadron nucleus interaction

Geant4 hadronic physics design

- Each hadronic process may have several hadronic models
 active at various energy intervals
- Hadronic cross sections are independent on models
- Any model may use precompound model or deexcitation

G4GeneratorPrecompoundInterface

Geant4 hadronic models

General infrastructure update for 10.6

- Removed final state rotation both from elastic and inelastic processes
- Removed G4HadronicException and try/couch pattern from cross section sub-library and GetMeanFreePath() method, use only G4Exception
- Removed default GHEISHA cross sections
- Share cross section data between threads for XS and BGG classes
- Created new utility G4NuclearRadii with several parameterizations of nuclear radius
- Updated Starkov parameterizations for pion and kaon hadronnucleon cross section
- Added G4PARTICLEXS2.1 dataset

High Energy Models in Geant4 10.6

String Models Developments

- Since 10.5 development versions of FTF and QGS are merged to the production release
 - kept during 3 years separate to provide stability
- FTF improved for
 - thin target benchmarks
 - Interactions of light anti-ions
 - Introduced a coalescence model
- QGS
 - Improved thin target benchmarks
 - Provide narrower shower and increased visible energy
- In 10.6 unified between Physics Lists transitions
 - between FTFP and QGSP is 12-25 GeV
 - between cascade and FTFP is 3-6 GeV

Cascade Models: Bertini

- Phase space generation
 - for final states with more than two bodies
 - old Bertini generator incorrect
- Tried Kopylov phase space generator
 - validation results inconclusive (better in some regimes, worse in others)
 - keep original generator for now
- New possibility
 - INCL++ uses a biased phase space generator (based on Raubold-Lynch method)
 - entire final state can be rotated by arbitrary angle
 - sample angle from exponential describing elastic p-p and pi-p scattering
 - adapt this to Bertini

Biased Phase Space p + C -> p + X @ 8 GeV/c

Cascade models

Main developments for INCLXX was for 10.5:

- Improved strangeness production
- Provide the best description of d, t, He3, He4 production
- New dataset INCL1.0
- Only few bug fixes in the Binary cascade
 - Transition energy with the Bertini cascade 1-1.5 GeV

Low Energy Models in Geant4 10.6

Developments for pre-compound model and de-excitation module

- Established set of model parameters for PRECO and DEEX and user interface to these parameters
- Renewed internal data structure for nuclear levels
 - G4ENDSFSTATEDATA, G4LEVELGAMMADATA, G4RADIOACTIVEDATA are coherent
 - New data format was introduced in Geant4 10.3
 - All components of PRECO and DEEX use this data and not hard-coded numbers
- Provided long-lived isomer production
 - Added floating level states
 - Long lived isomers may be tracked by Geant4
- Provided correlated gamma emission for radioactive decay
 - Is disabled by default but may be enabled by a flag
- It was completed in general for Geant4 10.4
 - However, some fixes and improvements are still added in 10.5 and 10.6

Parameters for pre-compound/de-excitation

G4DeexPrecoParameters scheme

- Printout of all important parameters values at initialisation
- Modification of parameters allowed only at G4State_PreInit
- New boolean parameters are added recently allowing disable **DEEX** or **PRECO**

How it can be used?

- G4DeexPrecoParameters* param=
 G4Nucleart evelData::CatInstance() > CatR
 - G4NuclearLevelData::GetInstance()->GetParameters();
- param->StoreStoreICLeveIData(true);
- param->SetCorrelatedGamma(true);
- param->SetInternalConversionFlag(true);
- param->SetDeexChannelType(fGEM);
-
- param->Dump();
- G4ExcitationHandler has public Set methods
 - This interface is left in order to allow creation of custom handler
 - Normally parameters should be set via G4DeexPrecoParameters class

G4FermiBreakUpVI model

- Old G4FermiBreakUp model was based on hard-coded data
 - A pool of 112 states, Z < 9, A < 17
 - Precomputed probabilities of decay of each state from this pool into 2-, 3-, 4body final state from this pool
- New G4FermiBreakUpVI model fully based on data of G4GAMMALEVELDATA
 - A pool of 260 states from data files and 399 reactions, Z < 9, A < 17 (10.4)
 - A pool of 380 states from data files and 991 reactions, Z < 9, A < 17 (10.5)
 - Maximal excitation energy 20 MeV
 - Only binary decay chains are considered
 - A standard Coulomb barrier computation is used
 - An extra set of 80 unphysical fragments not known from data in 10.5
 - Including very exotic intermediate states like H₈ or He₂
 - Will be removed in 10.6 decay of unphysical fragments will be delegated to Evaporation
 - Probability of the first decay is computed on fly if initial excitation of the primary fragment is not equal to one of known levels
 - The second and others decay probabilities are precomputed
 - Final product is always a list of states from the main pool, which has no Fermi decay channel (may have gamma transition)

De-excitation module: parameterisation of level density

- For long time a simplified level density parameterization was used: Ld = 0.1*A
- In literature several fits to nuclear level data are published
- For Geant4 10.5 a variant was chosen from A.Mengoni and Yu. Nakajima, JNST 31 (1994) 151
 - Ld = $\alpha \bullet A \bullet (1 + \beta / A^{1/3})$
 - It turned out, that in order to have reasonable results, the same parameterisation should be used in evaporation, fission, photon evaporation
 - There is a new option in G4DeexPrecoParameters Get/Set LevelDensityFlag
 - The new default Ld = 0.075*A

ParticleHP

- By default tries to conserve energy/momentum event-byevent
 - works sometimes
 - in general no
- Current ParticleHP code often makes common sense modifications to get energy conservation, but this often destroys agreement with ENDF energy distributions
 - ENDF database rules deal only with distributions
 - violating these rules can cause unexpected results (like extra gammas) which make validation difficult
 - many environment variables exist to "fix up" ENDF
- Quick and dirty fix:
 - export G4NEUTRONHP_DO_NOT_ADJUST_FINAL_STATE=1
 - export G4PHP_DO_NOT_ADJUST_FINAL_STATE=1

Radioactive Decay Refactoring Completed

- Remove all radioactive decay biasing methods from G4RadioactiveDecay
 - better CPU performance for those not using biasing
 - cleaner code
 - new class name: G4RadioactiveDecayBase
 - rename as G4RadioactiveDecay for major release
- Put all biasing functionality in derived class
 - use for activation studies
 - new class name: G4Radioactivation

Radioactive Decay: Electron Capture

- N-shell capture added to G4ECDecay
 - machinery is there for all nuclides but currently data for only a few are included in RadioactiveDecay5.3
- Subshell capture ratios added
 - tables of PL2/PL1, PM2/PM1 and PN2/PN1 added to RadioactiveDecay5.3
 - based on bound electron radial wave amplitudes from Bambynek (1977)
 - partial probabilities of subshell capture calculated from above tables

Selected validation results

Double differential neutron production cross section for 22 MeV protons in ⁵²**Cr target** *N.S.Biryukov et al., Sov. J. Nucl. Phys.* 31 (1980) 3

Double differential neutron production cross section for 256 MeV protons in Al target *M.M.Meier et al., Nucl. Sci. Engeneering* 110 (1992) 289

Double differential proton production cross section for 62 MeV protons in carbon target F.E.Bertrand & R.W.Peelle, Phys. Rev. C 8 (1973) 1045

Double differential alpha production cross section for 62 MeV protons in carbon target F.E.Bertrand & R.W.Peelle, Phys. Rev. C 8 (1973) 1045

Isotope production by 1 GeV protons in Fe target C.Villagrasa et al., AIP Conference Proceeding 769 (2005) 842

- At this and previous plots INCL++ demonstrates more accurate simulation for ion components
- The binary cascade predictions improves when multi-fragmentation sub-model is enabled

Hadronic Cross Section Updates

G4PARTICLEXS2.1

- Structure of the data set is change because of particle HP
 - Separate directories for *n*, *p*, *d*, *t*, he3, he4 cross sections
 - Element x-sections from threshold to max hadronic energy (100 TeV)
 - Physics data tables shared between threads extracted from ParticleHP
 - Glauber Gribov cross section above 20 GeV for p and n
 - Glauber Gribove cross sections above 20 MeV for , d, t, he3, he4
- Added extra isotope data for 11 more elements (was 17 before)
 - Ne, Mg, S, Cl, K, Sc, Ti, Ga, Pd, In, Pt
 - Limit on isotope abundance is reduced to 0.001 (was 0.01)
- Fixed discontinues in last bins
 - Isotope data only for E < 20 MeV, above element data
- Fixed G4CrossSectionDataStore code
 - Isotope selection
 - Integral approach

Neutron x-sections in Aluminum

Hadron-nucleon cross sections: π^2 + p

K⁻ cross sections

- 1/v cross section shape at low energy confirmed by data
- Similar cross section shape for π^-
- Coulomb barrier for positively charged hadrons

Summary

- For Geant4 10.5 FTF and QGS development versions were integrated
- Substantial developments of low-energy models started in Geant4 10.3 and continued up to 10.6
- In Geant4 10.6 a significant efforts were put for unification of various Physics Lists
 - Common transitions between string/cascade
 - Common data sets for nuclear properties
 - Glauber-Gribov cross sections in majority of Physics Lists