

14th Geant4 Space User's Workshop

GUIMesh

A tool to convert STEP geometries in to GDML

<u>M. Pinto</u> and P. Gonçalves

21-23 October 2019 – Korinthia, Greece

Motivation

State-of-the-art tools

Name	Availability Application		
FASTRAD			
ESABASE2	Commercial	STEP format	
STEP-Tools			
SW2GDML		SolidWorks	
CADMesh	Open-source	STL	
STL2GDML		STL	

GUIMesh

New open-source tool – GUIMesh

Built on a previous method presented in 12th Geant4 Space Users Workshop (Surrey) Describe geometry as a mesh – G4Tessellated

(M. Pinto et al, DOI: <u>https://doi.org/10.1016/j.cpc.2019.01.024</u>)

GUIMesh – Tessellation

- □ Mesh quality depends on three parameters:
- Maximum Mesh Deviation, MMD Sag
- Maximum Angle between edges, θ
- Maximum edge length, l
- □ GUIMesh uses FreeCAD standard algorithm:
- MMD=user option (0.1 mm default)
- θ=45°
- |= ∞

(M. Pinto et al, DOI: <u>https://doi.org/10.1016/j.cpc.2019.01.024</u>)

GUI Mesh A Graphical User Interface to convert STEP files into GDML

Menu	Volume List	Volume Properties			
Find FreeCAD Dir	JUI-EFA-RDM-ML-111 1.0 P&I-Stack Abs Ta 3 B3 JUI-EFA-RDM-ML-032 2.0 PCB 9R JUI-EFA-RDM-ML-121 1.0 P&I-Stack Spacer AI 1 B	Name: JUI-EFA-RDM-ML-018 1.0 Tracker 6R			
Read STEP	JUI-EFA-RDM-ML-018 1.0 Tracker 6R JUI-EFA-RDM-ML-018 1.0 Tracker 6R JUI-EFA-RDM-ML-062 1.0 P&I-Stack Cable Set_C	Material: G4_Si			
World Size	JUI-EFA-RDM-ML-062 1.0 P&I-Stack Cable Set_C JUI-EFA-RDM-ML-019 2.0 PCB 11R JUI-EFA-RDM-ML-105 3.0 P&I-Stack Abs Ta 2 B1	Volume: 0.0507656323482 cm3			
Save Properties	JUI-EFA-RDM-ML-027 1.0 P&I-Stack Abs AI 3 JUI-EFA-RDM-ML-036 1.0 P&I-Stack Cable S1 JUI-EFA-RDM-ML-018 1.0 Tracker 6R	Mass: 0.118283923371 g MMD: 0.1 mm Write GDML: Yes			
Load Properties	JUI-EFA-RDM-ML-018 1.0 Tracker 6R JUI-EFA-RDM-ML-062 1.0 P&I-Stack Cable Set_C JUI-EFA-RDM-ML-062 1.0 P&I-Stack Cable Set_C JUI-EFA-RDM-ML-019 2.0 PCB 11R	Change Material			
Write GDML	JUI-EFA-RDM-ML-026 2.0 P&I-Stack Abs AI 4 JUI-EFA-RDM-ML-018 1.0 Tracker 6R JUI-EFA-RDM-ML-018 1.0 Tracker 6R JUI-EFA-RDM-ML-019 2.0 PCB 11R	Change MMD			
Exit Program	JUI-EFA-RDM-ML-062 1.0 P&I-Stack Cable Set_D JUI-EFA-RDM-ML-062 1.0 P&I-Stack Cable Set_D JUI-EFA-RDM-ML-025 3.0 P&I-Stack Abs AI 5 JUI-EFA-RDM-ML-037 1.0 P&I-Stack Cable S2	Change GDML Option			
Status: FreeCAD loaded STEP file loaded		Copyright (c) 2018 Marco Gui Alves Pint mail: mginto11@gmail.co			
(M. Pinto et al, DOI: https://doi.org/10.1016/j.cpc.2019.01.024)					

21-23 October 2019 – Korinthia, Greece

GUI Mesh

Material Manager

Menu	Element List	Material List	Material Properties		
Load Material DB	G4_GALLIUM_ARSENIDE G4_GEL_PHOTO_EMULSION G4_Pyrex_Glass G4_GLASS_LEAD G4_GLASS_PLATE G4_GLUCOSE G4_GLUTAMINE G4_GLYCEROL G4_GUANINE G4_GUANINE	DenseAl newH SiO2 <u>Demo</u>	Demo		
Delete_Materials			Density: 20.3 g/cm3		
Save Materials DB	G4_GYPSOM G4_N-HEPTANE		Element	Fraction	
	G4_N-HEXANE G4_KAPTON		G4_H	0.05	
Load Material	G4_LANTHANUM_OXYBROMIDE G4_LANTHANUM_OXYSULFIDE		G4_KAPTON	0.15	
	G4_LEAD_OXIDE		G4_Na	0.1	
	G4_LITHIUM_AMIDE G4_LITHIUM_CARBONATE		G4_Si	0.175	
Create New Material	G4_LITHIUM_FLUORIDE		G4_AI	0.025	
	G4_LITHIUM_HYDRIDE G4_LITHIUM_IODIDE		G4_Pb	0.1	
			G4_Fe	0.1	
Exit MatManager	G4_LITHIUM_TETRABORATE G4_M3_WAX		G4_CI	0.03	
	G4_MAGNESIUM_CARBONATE		G4_TEFLON	0.17	
	G4_MAGNESIUM_OXIDE	•			

Copyright (c) 2018 Marco Gui Alves Pinto mail: mgpinto11@gmail.com

(M. Pinto et al, DOI: <u>https://doi.org/10.1016/j.cpc.2019.01.024</u>)

21-23 October 2019 – Korinthia, Greece

21-23 October 2019 – Korinthia, Greece

Validation – Geometry

Validation – Geometry Precision

21-23 October 2019 – Korinthia, Greece

Validation – Tracking

500 M

Material well implemented - GUIMesh and G4 implementations equivalent

Deposited energy distribution depends on geometry precision - Average values are equivalent

Benchmarking

Ж

Ж

MMD

10*mm

CPU time (s)

10²

10

10-

10⁻²

10⁻³

10⁻⁴

(KB)

Geometry Memory

Ж

+

Geometry CPU Time

Simulation CPU Time

Geometry Memory

MMD

0.01*mm

Ж

MMD

0.1*mm

Ж

Ж

Ж

MMD

1.0*mm

Computing time and memory usage are critical:

- A mesh can contains a lot of triangles
- Navigation computing time is high

Navigation and memory usages

Increase exponentially – with the number of facets

CSG

-110⁻¹

MMD

0.001*mm

RADEM – Radiation Hard Electron Monitor for the ESA JUICE mission

- Radiation Analysis Total Ionizing Dose (TID) and fluence
- Detector response energy and angular distribution

New concept

Copper Collimator

- □ 28 holes (directions)
- Diameter: 1mm
- Length: 8mm

Single 505 µm Kapton absorber □ Different energy thresholds

Detection Plane (instrumented PIN diode):

- □ 31 Silicon sensors (300 µm thick)
- 4 zenithal directions
- 9 azimuthal directions
- 3 blind sensors

Detector response

(M. Pinto et al, DOI: <u>10.1109/TNS.2019.2900398</u>)

21-23 October 2019 – Korinthia, Greece

Use Cases – AEEF-TDP8

MFS Response function

MFS Electron counts – SEP event 01/2014

- □ Fully open-source and generic tool developed
- <u>https://github.com/MPintoSpace/GUIMesh</u>
- https://doi.org/10.1016/j.cpc.2019.01.024

Very very easy to install and use

Leverages on the mesh format

- Effect on computation studied
- Computing time higher for higher detail

Detail and materials customable

□ Application extends to other relevant fields <

Python 3 port – still needs testing

High Energy Physics

Nuclear Physics

Medical Physics

