Geant4 Space Users' Workshop 2019

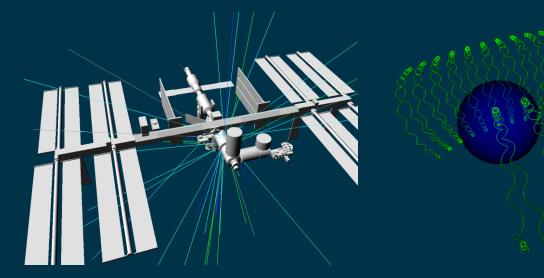
ESA STATUS REPORT

Marco Vuolo, G.Santin, P.Nieminen

ESA/ESTEC and RHEA System

Xylokastro, Korinthia, Greece 21 October 2019

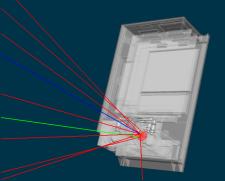
ESA UNCLASSIFIED - For Official Use


Outline

- ESA projects and Geant4 support
- Tool developments
- Perspectives

Summary

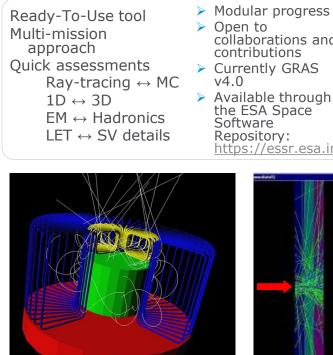
- Overview on ESA Geant4 based tools and recent achievements
- > ESA Science Missions support:
 - JUICE (Materials selection, geometry debugging, code validation, SEE, etc.)
 - ATHENA (particle background study, AREMBES, EXACRAD)
 - Additional ESA Cosmic Vision missions
- Updates on ESA Radiation Monitors and recent developments
- R&D Activities using ESA G4 tools (G4G, ROSSINI ...)
- Additional topics of interest



Overview on ESA Geant4 based tools and recent achievements

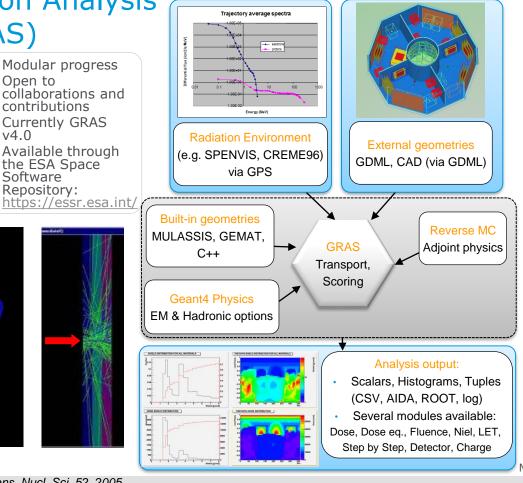
ESA G4 BASED TOOLS

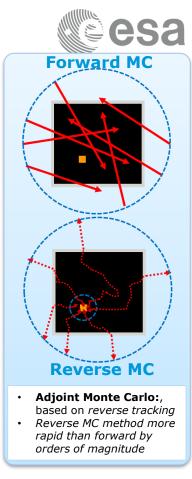
Geant4: 20+ year in the collaboration
 GRAS (Forward and Reverse MC, 3D)


ESA Geant4 Based tools

- **SSAT** (Ray Tracing)
- MULASSIS (MC, 1D)
- **GEMAT** (Geant4-based Microdosimetry Tool)
- MAGNETOCOSMICS (magnetosphere simulations)
- **ATMOCOSMICS** (atmosphere simulations)
- **PLANETOCOSMICS-J** (Extension to planets and moons)

http://space-env.esa.int/index.php/geant4-radiation-analysis-for-space.html


By L. Desorgher , PSI, CHUV


Geant4 Radiation Analysis for Space (GRAS)

GEANT4 magnetic field manager

ESA UNCLASSIFIED - For Official Use G Santin, V Ivantchenko et al, IEEE Trans. Nucl. Sci. 52, 2005

Marco Vuolo | 21/11/2018 | Slide 5

CIRSOS (Collaborative Iterative Radiation Shielding Optimization System)

- Multi-user collaborative radiation analysis, I/F to SPENVIS & OMERE, CAD through GDML export by FASTRAD & ESABASE2
- Job management on local PC and remote clusters
- Local or remote DB
- <u>Geant4 based analysis tools</u>:
 -Ray Tracing (SSAT)
 -Forward and Reverse MC (GRAS)
- <u>Geometry and Environment from</u> <u>the DB</u>
- Parametric analysis
- Full control of Geant4 physics

* CHVcare			REALCONN.
CRIII CARRIN	and the second s	# X ustras () were i Dericherit()	
State bas, Har-controls	Check prentage		
Projection type & presentat	-		
Orthogenal	Ingelia		
Vitelana	Rest lies		
First cut plane			
Get HX	OM #		
Gut et	04.4		
Cut N2	04.4		
Ostana fon arge (m) :	43		
Position of light source:			
Bungle Stefault + 60 degl	4.1		
a orga (Arlash - 41 org)	20.0		
Neve / Lood viscolitation at	thebutes:		
Sava Van As	Open litro		
	bet.		

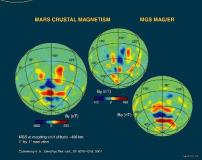
RTENUM, PARIS 🥪 ASTRIUM Eta

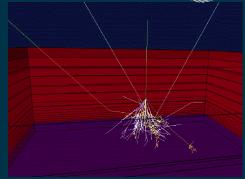
	lication Simulation PostProcessing			Environment (link to
Project Wewer			GRAS Reverse Input Builder Ø ×	Spenvis, Omere)
Name	type	application	Save macro_file_name.gvimac Reset Run	
testl	project	E	Geometry Source Spectra Tally	
Geometry Environment	geo			
Simulations	env		Add new module Name td	Geometry (GDML, G4
 simulations s1 	simulation	GRAS		
= si sl.csv	csv file	GRAS	Type Ionising dose	visualization)
\$1.09	csv file	GRAS	Remove module td •	visualization
macro file name.o4mac	macro file	GRAS	Remote model	
sl.csv	csv file	GRAS		
et ens	en Ge	0040		
m			Definition of module	DI L'
Viewer		ē ×	Add volume for analysis	Physics
teps',", 1,'Average number of steps' rorSteps',", 1,'Error on number of steps'				/
rorSteps', 1, Error on number of steps' 113141e-001 1 168803e-003 6 208171e-00	1, 2.597032e-002, 0.000000e+000, 0.000000e	+000_1_410751e+002	Remove Volume	
301615e-002				
nd of Block , 12, 3, 2, 0, 6, 6, 100, 2				
RAS DOSE ANALYSIS MODULE			Add interface between volumes	
DSE VS PRIMARY KINETIC ENERGY			Add Interface between volumes	
RAS HISTOGRAM 1D' AME', -1,'t1','t1_dose_vs_primary_kine'			Volume In Volume Out	FMC, RMC, SSAT
TLE'1.'t1 dose VS primary kinetic energy				
wer',", 1,'Bin lower edge'			Remove interface	
oper',", 1,'Bin upper edge' ean',", 1,'Bin mean'				
slue', , 1,'Bin value'				
			Add particle Remove particle -	
unning Sim Viewer		ē×		Tallies, Scoring
ame host id process id	start time	status		runco, ocoring
\$1		running	Unit MeV •	
9 719	2011-05-23 08:04:24	running		
9 881	2011-05-23 08:04:27	running		
11 5160	2011-05-23 08:04:27	running	Curve Set *	 Parametric analyses,
11 5676	2011-05-23 08:04:27	running	Max Nb events for source 10000	
			Hax to even a source 10000 V	Multi-stage
			Detines	Multi-staye
				aimeulatiana Multinla
			Cosine correction both way tally No histograms	simulations, Multiple
		•	path length correction No nTuples	
imulation Facility Viewer		e ×		source
ame	Host name	1P		
Holly	('holly')			
Local host	['localhost']	E E		Taba waa waa waxaa ku wa
cocornost	(locality)			Jobs management or
				-1
				clusters
				Post processing
11		,		Post processing,
III		•		Post processing, Python console

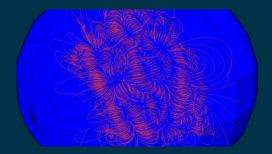
ESA UNCLASSIFIED - For Official Use

PlanetoCosmics

Cesa




Geant4 simulation of Cosmic Rays in planetary Atmo- / Magneto- spheres



- Originally for Earth environment
- Extended to
 - Mars (local magnetic fields)
 - Mercury
 - Jupiter
 - Jovian moons
- Possible future development
 - Saturn, Uranus, etc.

http://cosray.unibe.ch/~laurent/planetocosmics/

Geant4 implementation L. Desorgher, Space IT

SPENVIS Project: THESEUS Model packages Planet: Earth

SPENVIS is ESA's SPace **ENVironment Information System** WWW interface to models of the space environment and its effects Cosmic rays, radiation belts, solar energetic particles, plasmas, gases and microparticles Damage-equivalent fluences for solar cells (EQFLUX). •Ionising dose (SHIELDOSE). •Damage-equivalent proton fluences and non-ionising energy loss (NIEL). Single-event upset rates in microelectronic devices.

Coordinate generators					
Radiation sources and effects					
Radiation sources					
Trapped proton and electron fluxes Standard models •					
Trapped proton flux anisotropy					
Solar particle peak fluxes (only for SEU)					
Solar particle mission fluences					
Galactic cosmic ray fluxes					
Shielded flux					
Solar cell radiation damage					
<u>Damage equivalent fluences for solar cells (EQFLUX)</u>					
NIEL based damage equivalent fluences for solar cells (MC-SCREAM)					
Long-term radiation doses					
Ionizing dose for simple geometries					
Non-ionizing energy loss for simple geometries					
Effective dose and ambient dose equivalent					
Single event effects					
Short-term SEU rates and LET spectra					
Long-term SEUs and LET spectra					
Spacecraft charging					
Atmosphere and ionosphere					
Magnetic field					
Meteoroids and debris					
Miscellaneous					
Geant4 Tools					
ECSS Space Environment Standard					

Geant4 tools:

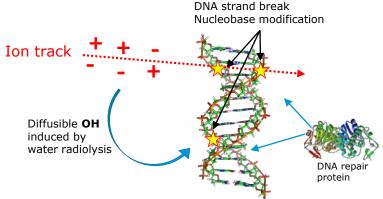
- <u>Multi-Layered Shielding</u> <u>Simulation (Mulassis)</u>
- <u>Geant4-based</u>
 <u>Microdosimetry Analysis</u>
 <u>Tool (GEMAT)</u>
- <u>Sector Shielding Analysis</u> <u>Tool (SSAT)</u>
- <u>Magnetocosmics</u>
- <u>Planetocosmics</u>
- GRAS

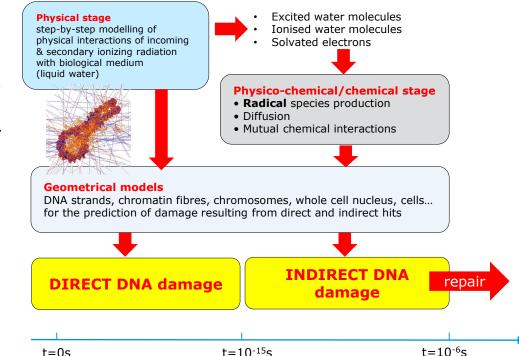
https://www.spenvis.oma.be/

Marco Vuolo | 21/11/2018 | Slide 8

ESA UNCLASSIFIED - For Official Use

Geant4-DNA


http://geant4-dna.org


ESA UNCLASSIFIED - For Official Use

The <u>Geant4</u> general purpose particle-matter Monte Carlo simulation toolkit is being extended with processes for the **modeling of early biological damage induced by ionising radiation at the DNA scale**. Such developments are on-going in the framework of the Geant4-DNA project, originally initiated by the <u>European Space Agency/ESTEC</u>.

Sébastien Incerti, CNRS / IN2P3 / CENBG

Marco Vuolo | 21/11/2018 | Slide 9

= II 🛌 == + II 💻 🔄 == II II = = = 🖬 🛶 🚺 II == = 🖬 🗗 💥 🕴

SCIENCE MISSION Support Using ESA Geant4 based tools

XMM-Newton Kaguya

Chandrayaan-1 Chandrayaan-2

JUICE

Columbus

AMS

MAXI Cor

ConeXpress

hanala 1

Chang'e-1

LISA

JUpiter Icy moons Explorer (JUICE)

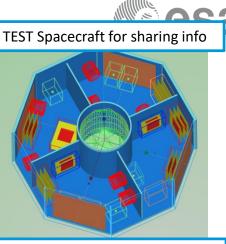
- JUICE is the first large-class mission in ESA's Cosmic Vision 2015-2025 programme.
- Planned for launch in 2022 and arrival at Jupiter in 2029,
- It will spend at least three years making detailed observations of the giant gaseous planet Jupiter and three of its largest moons, Ganymede, Callisto and Europa.

Very intense magnetic field

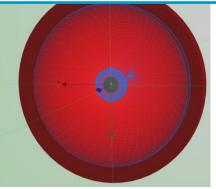
- Jupiter rotational period 9 h 56 min
- Plasma torus and radiation belts wobble due to 7° tilt between Jupiter rotational and magnetic axes

Hostile radiation environment

- Trapped electrons with energies >100MeV
- Intense, energetic, variable, difficult to predict
- Design driver for JUICE platform and payload
 - Sensor / component degradation
 High background noise for science instruments
 - Electron-induced SEE


Broad range of radiation analysis activities (TID, charging, DD, noise, SEE) for platform and instruments, **including Geant4 and GRAS**

Copyright: spacecraft: ESA/ATG medialab; Jupiter: NASA/ESA/J. Nichols (University of Leicester); Ganymede: NASA/JPL; Io: NASA/JPL/University of Arizona; Callisto and Europa: NASA/JPL/DLR


Cassini (NATURE 2002)

JUICE Geant4 related activities

- Radiation Shielding design: Vaults for sensitive electronics including High-Z materials
- RMC Tests and comparisons: Geant4 has crucial role in design and/or validation of both FASTRAD and NOVICE.
- Electron **back scattering** studied to explain some discrepancies between sectoring analysis and MC
- Electron-induced Single Event Effects studies (Maris Tali, RADECS 2016 IEEE Trans Nucl Sci, 2017):
 - Not a big issue @ Earth, but potentially @ Jupiter
 - Low energy ->direct ionization, Higher energies -> nuclear interactions
 - Gamma-nuclear and electro-nuclear processes
 - Need of **BIASING** techniques implementation into GRAS (started)

Sphere: 1mm Pb+4mm Al + Si det (0.5 mm r)

Marco Vuolo | 21/11/2018 | Slide 12

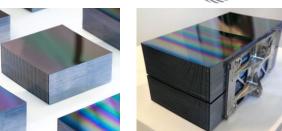
ESA UNCLASSIFIED - For Official Use

ESA Cosmic Vision L-class mission Athena

ATHENA (Advanced Telescope for High Energy Astrophysics) Primary goals:

- Mapping hot gas structures and determining their properties
- searching for supermassive black holes Launch 2028, with mission duration of 5 years
 - Halo orbit around L2 (or possibly L1)

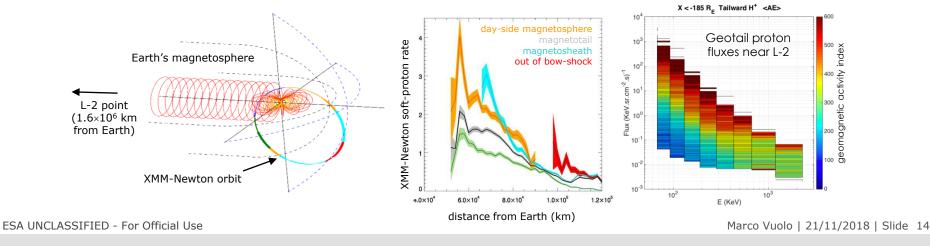
Mirror:


• Silicon Pore Optics

Two instruments:

- X-Ray Integral Field Unit (X-IFU), 0.3-10 keV
- Wide Field Imager (WFI), 0.1-12 keV

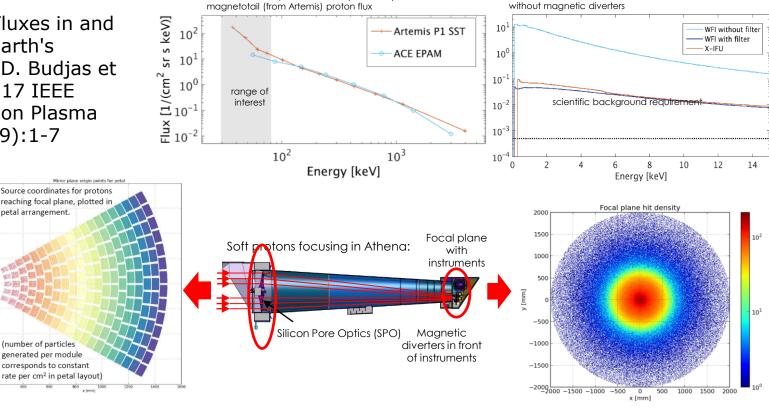
Soft protons focusing in Athena:


Marco Vuolo | 21/11/2018 | Slide 13

ESA UNCLASSIFIED - For Official Use

Particle background in the ATHENA X-ray telescope

- AREMBES (Athena Radiation Environment Models and x-ray Background Effects Simulator) :
 - Analysis of particle background in XMM-Newton data, measurements by Geotail, ACE and Wind spacecraft.
 - Development of a software simulator based on Geant4, capable of addressing all the background issues that the ATHENA mission will experience during its lifetime.
- soft protons: 10 keV to 100 keV energy range ("soft" compared to energetic particles causing SEE, TID, NIEL...)
 - > potential limitation for astrophysical observations that require low background
 - > 1/2 of XMM-Newton observations affected by "soft-proton flares"
 - > ATHENA will operate at L-2 Lagrange point new environment for X-ray telescopes



Particle background in the ATHENA X-ray telescope

esa

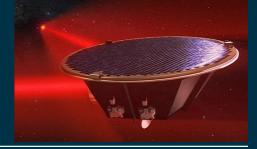
estimate of soft-proton background in Athena X-ray detectors

Soft Proton Fluxes in and Around the Earth's Magnetotail, D. Budjas et al. ,March 2017 IEEE Transactions on Plasma Science PP(99):1-7

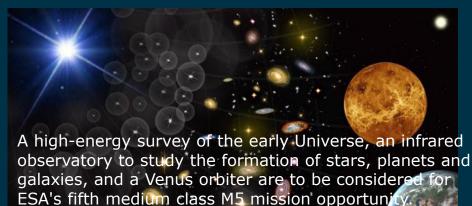
90% worst-case spectra for solar (from ACE) and solar + Earth

ESA UNCLASSIFIED - For Official Use

The set of th


Marco Vuolo | 21/11/2018 | Slide 15

Future missions in ESA's Cosmic Vision programme


ARIEL, the Atmospheric Remote-sensing Infrared Exoplanet Large-survey

LISA is a space-based observatory of gravitational waves consisting of a constellation of three spacecraft, with launch planned for 2034 L3

M5 selection:

THESEUS:

Transient High Energy Sources and Early Universe Surveyor

EnVision:

Venus high-resolution radar mapping and atmospheric studies


SPICA:

Space Infrared Telescope for Cosmology and Astrophysics

Marco Vuolo | 21/11/2018 | Slide 16

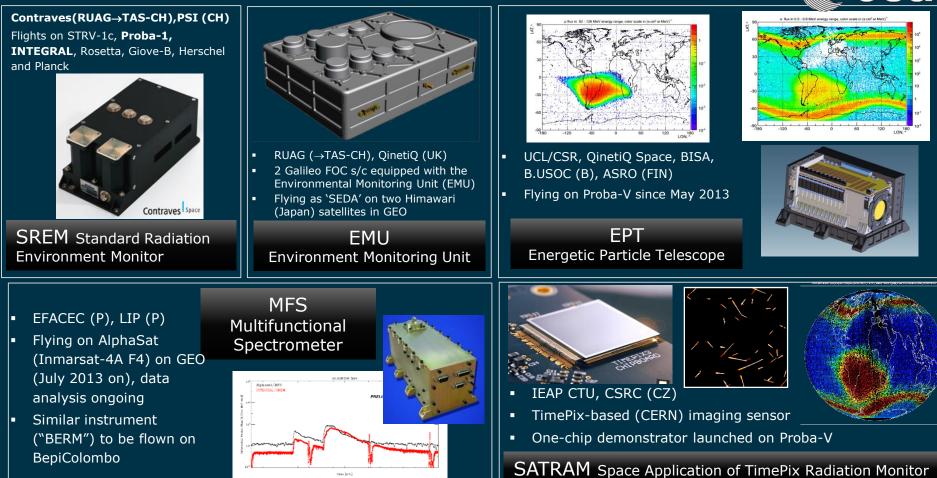
ESA UNCLASSIFIED - For Official Use

Cesa

Updates on ESA Radiation Monitors and recent developments

ESA RADIATION MONITORS UPDATES

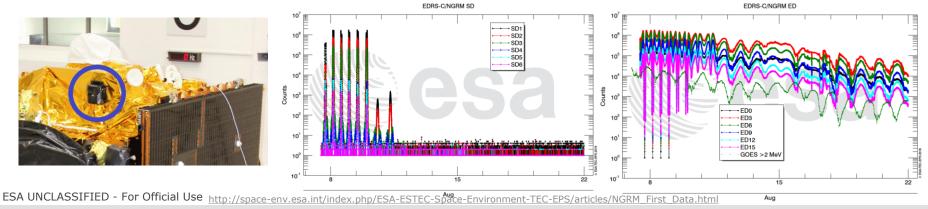
RadMaq

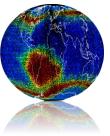

3DEES

*Reported dates are indicative (each project requires years of development, testing and mission preparation

SpacePix2

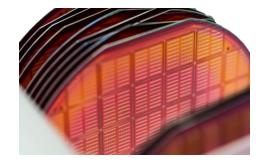
Overview of past ESA Radiation Monitors


Next Generation Radiation Monitor (NGRM)


- TAS-CH, PSI (CH), IDEAS (N), EREMS (F), ONERA (F)
- Intended as follow-on for the SREM: Batch approach
- Mass 1.5 kg, power 2.5 W
- Dimensions 150 x 133 x 69 mm³
- Two sensor heads, one for protons and heavy ions, the other for electrons
- Modular interface
- Flying on EDRS-C (GEO)
- Next flights : MetOp-SG, MTG and Sentinel-6.

Following the successful launch of the European Data Relay System (EDRS-C) spacecraft on 6 August 2019, the first radiation environment data from the onboard <u>Next Generation Radiation Monitor (NGRM)</u> instrument have been received.

Miniaturisation


Miniaturised Radiation Monitor (MIRAM)

- ➢ IEAP CTU, CSRC (CZ)
- > Mass <150 g, power <1 W
- TimePix3-based (CERN) imaging sensor
- Dosimeter for accumulated total dose + particle identification
- Status report TEC-EPS FPS Dec 2019, end of the project 2020

SpacePix 2

- FNSPE CTU, ESC Aerospace (CZ)
- Pixelated monolithic detector 180 nm SoI based on the Xchip03 development (FNSPE CTU)
- Expected 64x64 pixels, pixels pitch 50 μm or 100 μm
- Kicked off in 02/2019 End of the project 2021

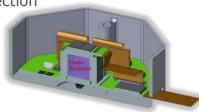

Marco Vuolo | 21/11/2018 | Slide 20

ESA UNCLASSIFIED - For Official Use

Personal Active Dosimeters - EAD & MIDAS

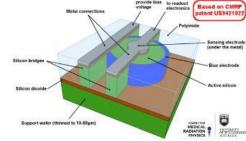
European Astronaut Dosimeter (EAD)

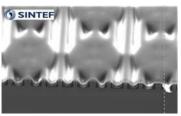
- DLR (DE), Mirion (FI), Tyndall (IE), PTB (DE), Seibersdorf Labor (AT)
- Active monitoring of astronaut radiation exposure
- Central unit (R/O, recharge), mobile units
- Flown to ISS, selected for Orion EM1 (5+2 units)



ESA UNCLASSIFIED - For Official Use

Highly Miniaturised ASIC Radiation Detector (MIDAS)


- ADVEOS, Uni.Cyprus, GEAC, Demokritos (GR)
- GCR ion discr. based on ASICs MAPS technology
 - ✓ 32 x 32 matrix, 105.5 um pixel pitch, coinc./track reco
 - ✓ Dynamic range: 0.5fCb-5 pCb (80db)
 - ✓ Pixel power <100 nA @ 1.8V, embedded A/D converter
- Scintillator/SiPM based fast neutron detection

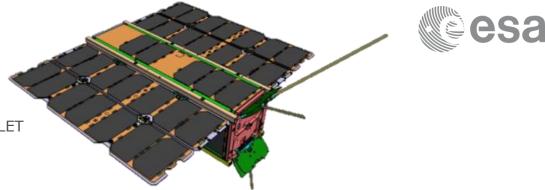


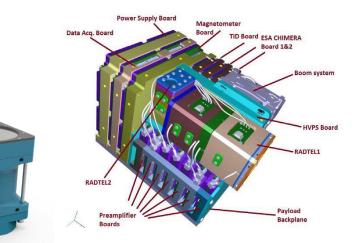
Tissue equivalent microdosimetry

- SINTEF (NO), Uni Wollongong
- 3D Silicon "mushroom" tech

Marco Vuolo | 21/11/2018 | Slide 21

In Orbit Demonstrator


RadCube: 3U cubesatby C3S (HU)


- RadMag: Radiation monitor, MTA EK (HU)
- > Measurements Protons, electrons, heavy ion LET
- SEE testing (CHIMERA boards)
- Magnetic field (w/ boom)
- > Phases B2-F kicked off in March 2017
- > Target orbit 500-600 km SSO, 3 year life time

Evolution:

RadMag2 development (started 2018) for the ESA SSA Distributed Space Weather Sensor System(D3S)

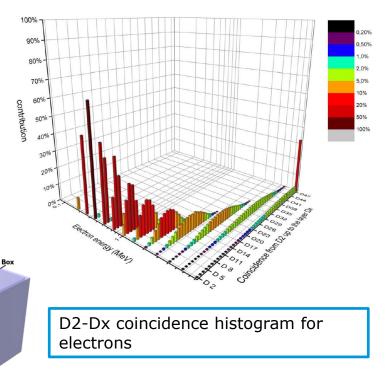
PRETTY (AT): radiation payload (4 RadFET, 4 FGDOS)

Marco Vuolo | 21/11/2018 | Slide 22

ESA UNCLASSIFIED - For Official Use

👝 💽 🚺 드 🚼 🕂 💥 🖮 📫 🕬 Eur


GRAS simulations for Radiation Monitor design


The "D3S RadMag" example by mta

The activity aims to develop a complex instrument package combining the cosmic ray and magnetic field measurement capability for space weather service and directly applicable in the Distributed Space Weather Sensors System (D3S) concept of ESA.

- 1D slab geometry
- Species separation efficiency
- Identification of important layers

- Real design
- Absorber materials
- Channels definition

Credit: A.Hirn and B.Zabori (MTA EK)

Marco Vuolo | 21/11/2018 | Slide 23

Overview on ESA R&D activities and studies which involve the ESA G4 tools

RECENT R&D ACTIVITIES

G4G – Geant4 Greece

Geant4-based Particle Simulation Facility in Greece for Future Science Mission Support

- IASA Institute of Accelerating Systems & Applications
- National Centre of Scientific Research "Demokritos"
- National Technical University Of Athens
- University of Ioannina

The objective is to establish a **strategic, complementary, long-term** capability as a key resource for space science-related simulation of particle "radiation" interactions with the payloads and systems, both for future missions and to aid data analysis from past and operating missions.

Main tasks:

REVIEW of existing Geant4 ESA developments

- Analysis and Improvement of Particle Transport and Effects Models for Electromagnetic Interactions
- Review of Particle Transport and Effects of Models for Hadronic Interactions

- ESA Geant4 tools general improvements and new implementation (GRAS Multi-Threading, etc.)
- Improvements and extension for Planetocosmics-J
- Reverse Monte-Carlo improvements and validation for simulation speed-up
- ATHENA, JUICE and LISA related radiation analyses and tools development
- New Geant4 applications for SPENVIS
- New advanced examples for the Geant4

ESA UNCLASSIFIED - For Official Use

Marco Vuolo | 21/11/2018 | Slide 25

Applications: Shielding materials studies and codes validation

ROSSINI 1-2-3: Radiation Shielding by ISRU and Innovative Materials for EVA, Vehicles and Habitats (2011-2019...)

ELSHIELD: Energetic Electron
 Shielding, Charging and Radiation
 Effects and Margins

RAPRO: Evaluation of Lighter and More Efficient Radiation Protection for Electronic and Sensitive Parts

MUSRAS: MUltiScreen RAdiation Shielding

E²RAD: Energetic Electrons Radiation Assessment Study


ESA internal activities and R&D

* in-situ resource utilisation

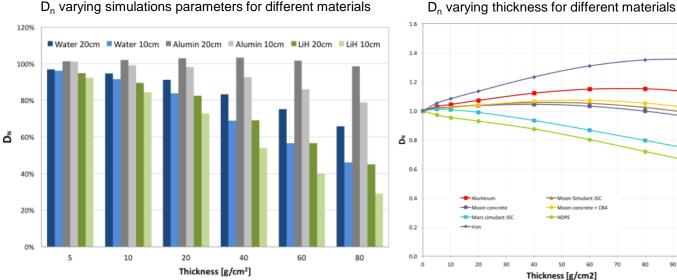
Marco Vuolo | 21/11/2018 | Slide 26

ESA UNCLASSIFIED - For Official Use

ESA UNCLASSIFIED - For Official Use ESA UNCLASSIFIED - For Official Use

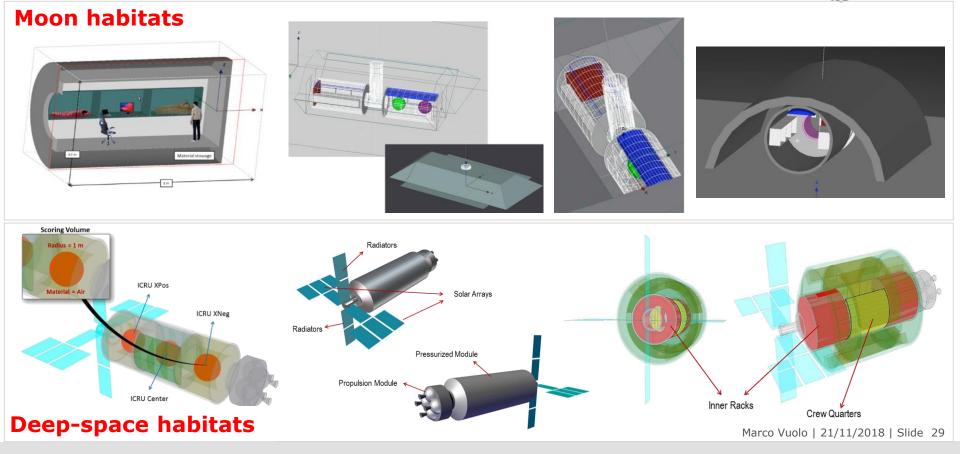
Marco Vuolo | 21/11/2018 | Slide 27

Trade-off 1D space environment simulations



1D simulations, beam perpendicular to the target material surface

- Different sources modeled as 1D beam impinging on the target material •
- Influence of detector and beam selection studied •
- Single and multilayer materials



ESA UNCLASSIFIED - For Official Use

Marco Vuolo | 21/11/2018 | Slide 28

ROSSINI 2: exposure scenarios

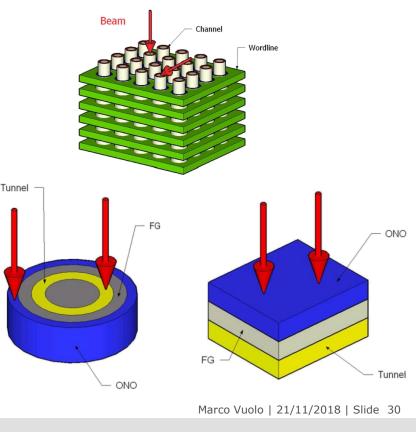
· = ⅠⅠ ▶ ⅠⅠ ━ + ⅠⅠ ■ ≔ = ⅠⅠ ⅠⅠ = = ∺ → ◙ ⅠⅠ = Ⅰ ₩ ₩ ₩

European Space Agency

*

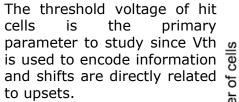
Effects of Heavy-Ion Irradiation on Vertical 3-D NAND Flash Memories

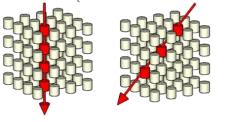
M. Bagatin^(D), S. Gerardin^(D), A. Paccagnella, S. Beltrami, E. Camerlenghi, M. Bertuccio, A. Costantino, A. Zadeh, V. Ferlet-Cavrois, G. Santin, and E. Daly

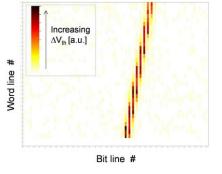

Technology Features:

- 3D NAND Flash have been introduced in the market. Thanks to the vertical structure, the same or better densities can be achieved with larger feature sizes and larger number of electrons per logic state with respect to planar samples.
- NAND flash memories are very appealing for solid-state data recorders, due to their large capacity, low cost per bit, and small power consumption.
- Their non-volatility minimizes data loss in the case of a singleevent functional interrupt.
- Several concerns exist about the radiation sensitivity of floating gate (FG) memories in harsh environments.

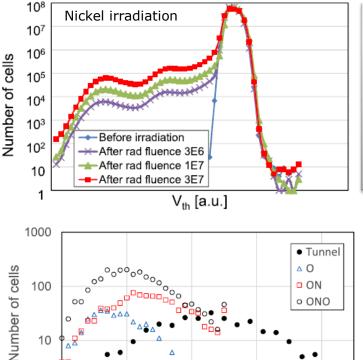
The **FG storage element** has a cylindrical annulus structure, and it is sandwiched between the **tunnel oxide** and the interpoly dielectric (**oxide-nitride-oxide, ONO**)


IEEE TRANSACTIONS ON NUCLEAR SCIENCE, VOL. 65, NO. 1, JANUARY 2018





ESA UNCLASSIFIED - For Official Use


Effects of Heavy-Ion Irradiation on Vertical 3-D NAND Flash Memories

ESA UNCLASSIFIED - For Official Use

∆V_{th} [a.u.]

- > Two peaks caused by the existence of two sensitive volumes: the tunnel oxide and ONO.
- \succ They can be struck independently, and a normal strike traverses them along the width (height) and not along the thickness.
- > The cross-sectional area of the ONO at normal incidence is larger than that of the tunnel oxide.

Vth distributions after Monte Carlo Geant4 simulations with Ni ions, different considering sensitive volumes: tunnel oxide and one or more layers in the ONO blocking oxide.

G4EmLivermorePhysics and G4EmPenelopePhysics (similar results)

Marco Vuolo | 21/11/2018 | Slide 31

10

CERN-ESA bilateral cooperation framework

A new collaboration agreement between **CERN and ESA**, signed on **11 July**, will address the challenge of operating in harsh radiation environments, found in both particle-physics facilities and outer space.

The agreement concerns radiation environments, technologies and facilities with potential applications in both space systems and particle-physics experiments or accelerators.

The agreement identifies seven specific projects with high priority:

- 1 High Energy Electrons Tests
- 2 High Penetration Heavy Ions Tests
- 3 EEE commercial components and modules (COTS) assessment strategy
- 4 In Orbit Technology Demonstration
- 5 Rad-Hard and Rad-Tol components and modules
- 6 Radiation Detectors, Monitors and Dosimeters
- 7 Simulation tools for radiation effects

ESA UNCLASSIFIED - For Official Use

Marco Vuolo | 21/11/2018 | Slide 32

European Space Agency

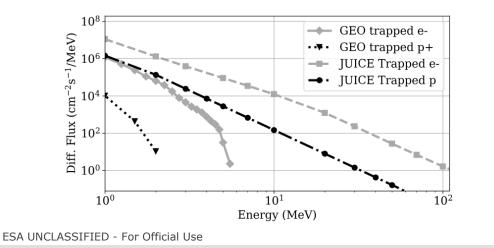
CERN

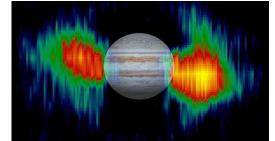
Achievements

- High-energy electron tests for the JUICE mission were performed in the CLEAR/VESPER facility to simulate the environment of Jupiter.
- Complex components were also tested with xenon and lead ions in the SPS North Area at CERN for an in-depth analysis of galactic cosmic-ray effects.
- These activities will continue and the newly identified ones will be implemented under the coordination of the CERN-ESA Committee on Radiation Issues.
- The results and related studies on irradiation of electronic components in VESPER/CLEAR during the past 3 years are mainly part of **Maris Tali's**(CERN, ESA, University of Jyvaskyla) **PhD thesis**

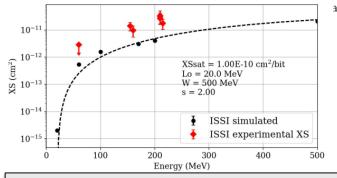
200 MeV electron beam for accelerator research; applied to studying possible impact of Jovian trapped electrons on ESA JUICE mission

- M. Tali et al., "High-Energy Electron-Induced SEUs and Jovian Environment Impact," in IEEE Transactions on Nuclear Science, vol. 64, no. 8, pp. 2016-2022, Aug. 2017.
- M. Tali et al., "Mechanisms of Electron-Induced Single-Event Upsets in Medical and Experimental LINACs," in IEEE Transactions on Nuclear Science, vol. 65, no. 8, pp. 1715-1723, Aug. 2018.
- M. Tali et al., "Mechanisms of Electron-Induced Single-Event Latchup," in IEEE Transactions on Nuclear Science, vol. 66, no. 1, pp. 437-443, Jan. 2019.


ESA UNCLASSIFIED - For Official Use


Marco Vuolo | 21/11/2018 | Slide 33

High-Energy Electron-Induced SEEs in the Jovian Environment


Main results from reference SEU Monitor testing:

- Electrons are capable of inducing SEUs in a component with a relatively large critical charge (~10fC) and with a cross section ~4 orders of magnitude lower that that from protons and neutrons
- The related basic mechanisms are electro and photo-nuclear interactions with silicon nuclei in sensitive region
- Main application: Jovian environment, where electron flux is intense and energetic, and large amount of photons are generated in the interaction of trapped electrons with spacecraft shielding

VESPER experiments showed for the first time that **high-energy electrons** are capable of inducing **destructive SEL events**

34

Topics of interest

- CAD-GDML interfaces (CSG and tessellated solids):
 - FASTRAD: TRAD
 - EDGE: Artenum
 - FreeCAD plugins:
 - FreeCAD GDML module Werner Meyer and Keith Sloan
 - PSI version, also available online: <u>http://polar.psi.ch/cadmc/converter/</u>
 - Salome plugins (old developments)
 - CADMesh and GUIMesh: Python tool to convert STEP geometries into GDML as tessellated solids using FreeCAD libraries
- Biasing options : general example coming?
- Scoring -> 2D and 3D dose/flux maps (PHITS, FLUKA, Etc.)

Summary and outlook

All major ESA science missions continue to be major Geant4 users, through ESA developments or commercial tools. Geant4 is playing an important and strategical role in many ESA activities related to Space Environment and Effects.

Several ongoing or planned Geant4 related activities :

- Support to scientific missions
- Radiation monitor developments
- Shielding materials
- Geant4 based tools review and improvement
- Geant4 physics models review development
- Future activity on RMC and geometry editors are foreseen

ESA UNCLASSIFIED - For Official Use

ESA related activities to G4SUW 2019

- Persistency of Geant4 Phase-Space Information for Radiation Effects and Instrument Background Analysis
 - o Pete Truscott (Kallisto Consultancy Ltd)
- AREMBES: Geant4 validation for X-ray space missions and G4 simulator development
 - Simone Lotti (INAF)
- Measurements and Geant4 simulations of the back-scattered electrons off ATHENA X-ray mirrors
 - Fan Lei (RadMod Research)
- Latest Updates of Grazing Angle Soft Proton Scattering on X-ray Optics
 - Sebastian Diebold (IAAT University of Tübingen)
- GEANT4 simulation Study of the MIDAS dosimeter/radiation monitor
 - Dr Christos Papadimitropoulos (Greek Atomic Energy Commission)
- The EXACRAD Project
 - Dr Silvano Molendi (INAF)
- Geant4 tools in SPENVIS: A user perspective
 - Neophytos Messios (BIRA-IASB)
- A comparative study of multiple scattering calculations implemented in general-purpose Monte Carlo codes
 - Prof. Michael Kokkoris (National Technical University of Athens), Dr Eleni Vagena (University of Ioannina), Dr Effrosyni Androulakaki (National Technical University of Athens), Prof. Nikolaos Patronis (University of Ioannina)
- Microdosimetry with Geant4 for Quality Factor estimates
 - o Dr Ioanna Kyriakou (Medical Physics Lab, University of Ioannina Medical School, Greece)

ESA UNCLASSIFIED - For Official Use

Marco Vuolo | 21/11/2018 | Slide 37

http://space-env.esa.int/index.php/geant4-radiation-analysis-for-space.html

Thanks for your attention!