

Geant4 simulation for proton irradiation experiments of space-use imager

Masanobu Ozaki (ISAS/JAXA)

<<u>ozaki.masanobu@jaxa.jp</u>>

Outline

- 0. Notice
- 1. Target Device
- 2. Target Radiation Environment
- 3. Experiments
- 4. Experiment Results and Geant4
- 5. Summary

Notice

This is on-going activity, and Geant4 adaptation is at very beginning phase: simulation setup or results not presented. I apologize if you need such information.

Target Mission: MMX

Launch	2024-09
Mars Arrival :	2025-08
Mars Departure :	2028-08
Earth Return :	2029-07

-

Target Device

Imaging sensor: CCD or MOS imager

Known effects by radiation:

- Dark current increase significant noise source
- CTE (Charge Transfer Efficiency) decrease, in case of CCD recover significantly when field is bright

Dark Current:

- Depend on temperature: double/half by 6−7 degC
 → Usually suppressed by cooling
- Hard to suppress on asteroid/moon day-side surface: high environment *T*, unless using big cooler

Requirement for Sensor: low noise

Deimos **Black and Carbon-rich** Their albedos are low (7%), about half of the Moon and similar to coal. They look like primordial D-type asteroids, which implies they are Phobos carbon rich celestial bodies.

Mars and Phobos taken by Mars Orbiter Mission (India) ©ISRO

Target Radiation Environment

- Mars has almost no magnetic fields or magnetospheres
 - No trapped particles
 - No magnetic shields for Solar flares

 $\downarrow \quad \downarrow$

Main radiation source is Solar flares

Experiments

Japan Aerospace Exploration Agency

Target Device: Commercial grade CCD

Proton irradiation:

- Main damage source in space mission, very wide energy range
- Significant NIEL
- Carried out with accelerator
 - 8 MeV, as low energy sample
 - 70 MeV, as high energy sample

⁶⁰Co irradiation:

- Standard method for TID effect evaluation
- Carried out as a reference

Experiment Results

Experiment results and Geant4

Big difference between 8 MeV and 70 MeV proton cases

- Much larger than TID difference
- (NIEL-dose difference is similar to TID)

Why?

- Misconfiguration of experiments?
- Single NIEL-energy dependency of damage creation?

• ...

Geant4 usage candidates:

- Experiment configuration verification
- Precise NIEL evaluation inside device

Summary

Beam test for space-mission candidate CCD carried out

• Significant damage difference by energy

Geant4 will be used for

- experiment setup verification
- NIEL precise estimation